Numerical and Physical Simulation of MAG Welding of Large S235JRC+N Steel Industrial Furnace Wall Panel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Numerical and Physical Simulation
3.2. Visual Inspection and Measurement of Weld Geometry
3.3. Hardness Measurements
4. Conclusions
- The use of different variants of the restraint system in the numerical simulation of the welding process of the industrial furnace wall panel gives a similar character of the deformation distribution, but with different values. The difference between the maximum mean strain in model 1 and the lowest mean strain in model 4 was found to be only 11%.
- The results of deformation measurements in the physical simulation of the furnace wall panel welding process differ from the results of the numerical simulation. These differences are visible in the values and the signs of the strains. This confirms the observations of other authors that numerical simulation of the welding process of alarge structures is difficult.
- Due to the requirements of EN ISO 13920 standard, all restraint models provide acceptable linear dimensional and flatness tolerances. Therefore, for the technology of welding a large wall panel of an industrial furnace, a variant of the constraint system according to model 1 is recommended.
- The results of microstructural tests and hardness measurements confirm the correctness of the developed technology, taking into account the recommended system of restraining the elements of the furnace wall panel during the welding process and the proposed sequence and method of welding.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Domański, T.; Piekarska, W.; Saternus, Z.; Kubiak, M.; Stano, S. Numerical Prediction of Strength of Socket Welded Pipes Taking into Account Computer Simulated Welding Stresses and Deformations. Materials 2022, 15, 3243. [Google Scholar] [CrossRef]
- Potukutchi, R.; Agrawal, H.; Perumalswami, P. Fatigue Analysis of Steel MIG Welds in Automotive Structures; SAE Technical Paper Series; SAE World Congress: Detroit, MI, USA, 2004. [Google Scholar]
- Barsoum, Z.; Barsoum, I. Residual stress effects on fatigue life of welded structures using LEFM. Eng. Fail. Anal. 2009, 16, 449–467. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, E.S.; Park, J.Y.; Choi, J. Numerical analysis of thermal deformation and residual stress in automotive muffler byMIG welding. J. Comput. Des. Eng. 2018, 5, 382–390. [Google Scholar]
- Perić, M.; Seleš, K.; Tonković, Z.; Lovrenić-Jugović, M. Numerical simulation of welding distortions in large structures with a simpli fied engineering approach. Open Phys. 2019, 17, 719–730. [Google Scholar] [CrossRef]
- Ilam, M.; Buijk, A.; Rais-Rohani, M.; Motoyama, K. Simulation based numerical optimization of arc welding process for reduced distortion in welded structures. Finite Elem. Anal. Des. 2014, 84, 54–64. [Google Scholar] [CrossRef]
- Prakash, R.; Gangradey, R. Review of high thickness welding analysis using SYSWELD for a fusion grade reactor. Fusion Eng. Des. 2013, 88, 2581–2584. [Google Scholar] [CrossRef]
- Farias, R.M.; Teixeira, P.R.F.; Araújo, D.B. Thermo-mechanical analysis of the MIG/MAG multi-pass welding process on AISI304L stainless steel plates. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 1245–1258. [Google Scholar] [CrossRef]
- Ogino, Y.; Hirata, Y.; Murphy, A.B. Numerical simulation of GMAW process using Ar and an Ar–CO2 gas mixture. Weld World 2016, 60, 345–353. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, C.; Zeng, L. Coupled finite element analysis of MIG welding assembly on auto-body high-strength steel panel and door hinge. Int. J. Adv. Manuf. Technol. 2010, 51, 551–559. [Google Scholar] [CrossRef]
- Skri, A.; Guidara, M.; Elhalouani, F. Numerical simulation of MIG type arc welding induced residual stresses and distortions in the sheets of S235 steel. Mater. Sci. Eng. 2010, 13, 012020. [Google Scholar] [CrossRef]
- Barsoum, Z.; Lundbäck, A. Simplified FE welding simulation of fillet welds–3Deffects on the formation residual stresses. Eng. Fail. Anal. 2009, 16, 2281–2289. [Google Scholar] [CrossRef]
- Li, W.; Yu, R.; Huang, D.; Wu, J.; Wang, Y.; Hu, T.; Wang, J. Numerical simulation of multi-layer rotating arc narrow gap MAG welding formed in steel plate. J. Manuf. Process. 2019, 45, 460–471. [Google Scholar] [CrossRef]
- Perić, M.; Tonković, Z.; Rodić, A.; Surjak, M.; Garašić, I.; Boras, I.; Švaić, S. Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld. Mater. Des. 2014, 53, 1052–1063. [Google Scholar] [CrossRef]
- Vemanaboina, H.; Akella, S.; Buddu, R.K. Welding process simulation model for temperature and residual stress analysis. Procedia Mater. Sci. 2014, 6, 1539–1546. [Google Scholar] [CrossRef] [Green Version]
- Varma Prasad, V.M.; Joy Varghese, V.M.; Suresh, M.R.; Siva Kumar, D. 3D simulation of residual stress developed during TIG welding of stainless-steel pipes. Procedia Technol. 2016, 24, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Koňár, R.; Patek, M. Numerical simulation of dissimilar weld joint in Sysweld simulation software. Tehnički Vjesnik 2017, 24, 137–142. [Google Scholar]
- Deng, D. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater. Des. 2009, 30, 359–366. [Google Scholar] [CrossRef]
- Han, Y.; Chen, J.; Ma, H.; Zhao, X.; Wu, C.; Gao, J. Numerical simulation of arc and droplet behaviors in TIG-MIG hybrid weling. Materials 2020, 13, 4520. [Google Scholar] [CrossRef]
- Casuso, M.; Veiga, F.; Suárez, A.; Bhujangrao, T.; Aldalr, E.; Artaza, T.; Amondarain, J.; Lamikiz, A. Model for the prediction of deformations in the manufacture of thin-walled parts by Wire Arc Additive Manufacturing technology. Metals 2021, 11, 678. [Google Scholar] [CrossRef]
- Ding, J.; Colegrove, P.; Mehnen, J.; Ganguly, S.; Sequeira Almeida, P.M.; Wang, F.; Williams, S. Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts. Comput. Mater. Sci. 2011, 50, 3315–3322. [Google Scholar] [CrossRef] [Green Version]
- Finch, D.M.; Burdekin, F.M. Effects of welding residual stresses on significance of defects in various types of welded joint. Eng. Fract. Mech. 1992, 41, 721–735. [Google Scholar] [CrossRef]
- Giętka, T.; Ciechacki, K.; Kik, T. Numerical simulation of duplex steel multi pass welding. Arch. Metall. Mater. 2016, 61, 1975–1984. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Ajit Shenoi, R. Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure. Ocean Eng. 2015, 106, 271–280. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, L.; Liu, Y.; Li, H.; Liu, C.H.; Wu, J.; Ma, J.; Li, Z. Effect of welding sequences on the welding stress and distortion in the CFETR vacuum vessel assembly using finite element simulation. Int. J. Press. Vessel. Pip. 2019, 175, 103930. [Google Scholar] [CrossRef]
- Bhatti Ayjwat, A.; Bersoum, Z.; Khurshid, M. Development of finite element simulation frame work for the prediction of residual stresses in large welded structures. Comput. Struct. 2014, 133, 1–11. [Google Scholar] [CrossRef]
Fe | C | Mn | P | S | Cu | N |
---|---|---|---|---|---|---|
balance | 0.14 | 0.48 | 0.013 | 0.007 | 0.014 | 0.003 |
Model | A1 | A2 | A3 | A4 | A5 | B1 | B3 | C1 | C2 | C3 | C4 | C5 | D1 | D2 | D3 | D4 | D5 | E1 |
1 | −0.19 | −0.49 | −0.79 | −1.02 | −1.50 | −0.89 | −0.71 | −0.41 | −0.66 | −0.85 | −1.03 | −1.24 | −0.37 | −0.59 | −0.78 | −1.00 | −1.28 | −0.88 |
2 | −0.19 | −0.48 | −0.77 | −1.00 | −1.48 | −0.87 | −0.71 | −0.41 | −0.64 | −0.83 | −1.01 | −1.20 | −0.37 | −0.58 | −0.77 | −0.98 | −1.24 | −0.85 |
3 | −0.22 | −0.50 | −0.77 | −1.00 | −1.43 | −0.86 | −0.71 | −0.42 | −0.64 | −0.83 | −1.00 | −1.18 | −0.39 | −0.58 | −0.76 | −0.97 | −1.21 | −0.85 |
4 | −0.21 | −0.49 | −0.77 | −0.99 | −1.42 | −0.85 | −0.71 | −0.42 | −0.63 | −0.82 | −0.99 | −1.16 | −0.39 | −0.58 | −0.76 | −0.97 | −1.20 | −0.84 |
Model | E2 | E3 | E4 | E5 | F1 | F2 | F3 | F4 | F5 | G1 | G2 | G3 | H1 | H2 | H3 | |||
1 | −0.85 | −0.86 | −0.88 | −0.89 | −0.75 | −0.77 | −0.79 | −0.79 | −0.77 | −0.89 | −1.15 | −0.72 | −0.81 | −0.46 | −0.80 | |||
2 | −0.83 | −0.84 | −0.86 | −0.87 | −0.72 | −0.74 | −0.76 | −0.76 | −0.75 | −0.84 | −1.15 | −0.69 | −0.81 | −0.41 | −0.77 | |||
3 | −0.83 | −0.83 | −0.85 | −0.86 | −0.73 | −0.74 | −0.76 | −0.76 | −0.75 | −0.89 | −1.19 | −0.73 | −0.76 | −0.37 | −0.74 | |||
4 | −0.82 | −0.83 | −0.85 | −0.86 | −0.71 | −0.73 | −0.75 | −0.75 | −0.74 | −0.87 | −1.20 | −0.72 | −0.76 | −0.33 | −0.72 |
Model | A1 | A2 | A3 | A4 | A5 | B1 | B3 | C1 | C2 | C3 | C4 | C5 | D1 | D2 | D3 | D4 | D5 | E1 |
1 | 0.95 | 0.98 | 1.05 | 1.11 | 1.15 | 0.51 | 1.29 | 0.69 | 0.72 | 0.82 | 0.94 | 0.91 | 0.98 | 0.93 | 1.04 | 1.14 | 1.17 | 0.66 |
2 | 0.91 | 0.93 | 0.99 | 1.05 | 1.08 | 0.45 | 1.23 | 0.65 | 0.65 | 0.75 | 0.86 | 0.84 | 0.92 | 0.89 | 0.98 | 1.08 | 1.08 | 0.57 |
3 | 0.89 | 0.92 | 0.98 | 1.04 | 1.07 | 0.50 | 1.20 | 0.65 | 0.67 | 0.77 | 0.88 | 0.85 | 0.91 | 0.89 | 0.98 | 1.08 | 1.09 | 0.64 |
4 | 0.86 | 0.89 | 0.95 | 1.00 | 1.03 | 0.47 | 1.17 | 0.63 | 0.64 | 0.73 | 0.83 | 0.81 | 0.88 | 0.86 | 0.95 | 1.04 | 1.03 | 0.59 |
Model | E2 | E3 | E4 | E5 | F1 | F2 | F3 | F4 | F5 | G1 | G2 | G3 | H1 | H2 | H3 | |||
1 | 1.21 | 1.25 | 1.24 | 0.88 | 1.08 | 0.77 | 0.74 | 0.68 | 1.23 | 0.83 | 0.82 | 0.82 | 1.09 | 1.09 | 1.09 | |||
2 | 1.11 | 1.17 | 1.12 | 0.75 | 1.06 | 0.74 | 0.67 | 0.65 | 1.15 | 0.76 | 0.77 | 0.79 | 0.97 | 0.98 | 1.00 | |||
3 | 1.22 | 1.26 | 1.22 | 0.81 | 1.01 | 0.66 | 0.62 | 0.56 | 1.12 | 0.78 | 0.78 | 0.78 | 1.00 | 1.00 | 1.00 | |||
4 | 1.16 | 1.21 | 1.16 | 0.75 | 0.99 | 0.64 | 0.58 | 0.55 | 1.07 | 0.74 | 0.75 | 0.77 | 0.93 | 0.94 | 0.95 |
Model | A1 | A2 | A3 | A4 | A5 | B1 | B3 | C1 | C2 | C3 | C4 | C5 | D1 | D2 | D3 | D4 | D5 | E1 |
1 | 5.59 | 7.43 | 8.01 | 7.94 | 6.14 | 7.58 | 7.36 | 2.82 | 4.68 | 4.98 | 4.56 | 2.94 | 2.40 | 3.83 | 4.55 | 4.67 | 2.86 | 1.56 |
2 | 5.23 | 7.05 | 7.57 | 7.48 | 5.64 | 7.27 | 6.94 | 2.44 | 4.32 | 4.58 | 4.15 | 2.46 | 2.03 | 3.44 | 4.09 | 4.18 | 2.28 | 1.42 |
3 | 5.25 | 7.13 | 7.70 | 7.56 | 5.68 | 7.28 | 6.93 | 2.81 | 4.72 | 5.00 | 4.57 | 2.87 | 2.38 | 3.85 | 4.53 | 4.60 | 2.68 | 1.50 |
4 | 5.05 | 6.90 | 7.45 | 7.29 | 5.41 | 7.10 | 6.69 | 2.57 | 4.51 | 4.78 | 4.33 | 2.57 | 2.15 | 3.63 | 4.27 | 4.32 | 2.34 | 1.43 |
Model | E2 | E3 | E4 | E5 | F1 | F2 | F3 | F4 | F5 | G1 | G2 | G3 | H1 | H2 | H3 | |||
1 | 3.59 | 3.80 | 3.02 | 1.14 | 1.21 | 3.08 | 3.91 | 3.78 | 1.85 | 0.95 | 1.78 | 0.70 | 1.01 | 2.11 | 1.28 | |||
2 | 3.32 | 3.58 | 2.82 | 1.05 | 1.09 | 2.78 | 3.51 | 3.23 | 1.39 | 0.65 | 1.34 | 0.46 | 0.65 | 1.47 | 0.72 | |||
3 | 3.54 | 3.80 | 3.01 | 1.10 | 1.18 | 3.02 | 3.81 | 3.57 | 1.58 | 0.87 | 1.67 | 0.64 | 0.90 | 1.87 | 1.02 | |||
4 | 3.38 | 3.67 | 2.89 | 1.06 | 1.11 | 2.85 | 3.58 | 3.26 | 1.33 | 0.68 | 1.39 | 0.50 | 0.67 | 1.49 | 0.69 |
Distance | Deformation, mm | ||||
---|---|---|---|---|---|
Physical Simulation | Numerical Simulation | ||||
Model 1 | Model 2 | Model 3 | Model 4 | ||
C1–C5 | −2.00 | −1.65 | −1.61 | −1.60 | −1.58 |
D1–D5 | −2.00 | −1.65 | −1.61 | −1.60 | −1.59 |
E1–E5 | 0.00 | −1.77 | −1.72 | −1.71 | −1.70 |
F1–F5 | +1.00 | −1.52 | −1.47 | −1.48 | −1.45 |
G1–G3 | 0.00 | +1.65 | +1.55 | +1.56 | +1.52 |
H1–H3 | −2.00 | +2.18 | +1.97 | +2.00 | +1.88 |
Point | Deformation in the Direction of the Z axis, mm | ||||
---|---|---|---|---|---|
Physical Simulation | Numerical Simulation | ||||
Model 1 | Model 2 | Model 3 | Model 4 | ||
A1 | +4 | +5.59 | +5.23 | +5.25 | +5.05 |
A2 | +6 | +7.43 | +7.05 | +7.13 | +6.90 |
A3 | +7 | +8.01 | +7.57 | +7.70 | +7.45 |
A4 | +5 | +7.94 | +7.48 | +7.56 | +7.29 |
A5 | +13 | +6.14 | +5.64 | +5.68 | +5.41 |
B1 | +6 | +7.58 | +7.27 | +7.28 | +7.10 |
B2 | +6 | +7.36 | +6.94 | +6.93 | +6.69 |
C1 | −2 | +2.82 | +2.44 | +2.81 | +2.57 |
C2 | −2 | +4.68 | +4.32 | +4.72 | +4.51 |
C3 | −1 | +4.98 | +4.58 | +5.00 | +4.78 |
C4 | −8 | +4.56 | +4.15 | +4.57 | +4.33 |
C5 | −3 | +2.94 | +2.46 | +2.87 | +2.57 |
D1 | −3 | +2.40 | +2.03 | +2.38 | +2.15 |
D2 | −1 | +3.83 | +3.44 | +3.85 | +3.63 |
D3 | +1 | +4.55 | +4.09 | +4.53 | +4.27 |
D4 | +1 | +4.67 | +4.18 | +4.60 | +4.32 |
D5 | −1 | +2.86 | +2.28 | +2.68 | +2.34 |
E1 | +5 | +1.56 | +1.42 | +1.50 | +1.43 |
E2 | +4 | +3.59 | +3.32 | +3.54 | +3.38 |
E3 | +1 | +3.80 | +3.58 | +3.80 | +3.67 |
E4 | 0 | +3.02 | +2.82 | +3.01 | +2.89 |
E5 | −2 | +1.14 | +1.05 | +1.10 | +1.06 |
F1 | −4 | +1.21 | +1.09 | +1.18 | +1.11 |
F2 | +1 | +3.08 | +2.78 | +3.02 | +2.85 |
F3 | +1 | +3.91 | +3.51 | +3.81 | +3.58 |
F4 | −1 | +3.78 | +3.23 | +3.57 | +3.26 |
F5 | −4 | +1.85 | +1.39 | +1.58 | +1.33 |
G1 | −1 | +0.95 | +0.65 | +0.87 | +0.68 |
G2 | −3 | +1.78 | +1.34 | +1.67 | +1.39 |
G3 | −3 | +0.70 | v0.46 | +0.64 | +0.50 |
H1 | −3 | +1.01 | +0.65 | +0.90 | +0.67 |
H2 | 0 | +2.11 | +1.47 | +1.87 | +1.49 |
H3 | 5 | +1.28 | +0.72 | +1.02 | +0.69 |
Average of absolute values | 3.27 | 3.73 | 3.35 | 3.59 | 3.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mróz, M.; Czech, R.; Kupiec, B.; Dec, A.; Spólnik, M.; Rąb, P. Numerical and Physical Simulation of MAG Welding of Large S235JRC+N Steel Industrial Furnace Wall Panel. Materials 2023, 16, 2779. https://doi.org/10.3390/ma16072779
Mróz M, Czech R, Kupiec B, Dec A, Spólnik M, Rąb P. Numerical and Physical Simulation of MAG Welding of Large S235JRC+N Steel Industrial Furnace Wall Panel. Materials. 2023; 16(7):2779. https://doi.org/10.3390/ma16072779
Chicago/Turabian StyleMróz, Marek, Robert Czech, Bogdan Kupiec, Andrzej Dec, Marcin Spólnik, and Patryk Rąb. 2023. "Numerical and Physical Simulation of MAG Welding of Large S235JRC+N Steel Industrial Furnace Wall Panel" Materials 16, no. 7: 2779. https://doi.org/10.3390/ma16072779
APA StyleMróz, M., Czech, R., Kupiec, B., Dec, A., Spólnik, M., & Rąb, P. (2023). Numerical and Physical Simulation of MAG Welding of Large S235JRC+N Steel Industrial Furnace Wall Panel. Materials, 16(7), 2779. https://doi.org/10.3390/ma16072779