Portland Cement-Based Grouts Enhanced with Basalt Fibers for Post-Tensioned Concrete Duct Filling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement (OPC)
2.1.2. Commercial Grout 1 (CG-1)
2.1.3. Commercial Grout 2 (CG-2)
2.1.4. Fine Aggregate (FA)
2.1.5. Superplasticizer Additive (SPA)
2.1.6. Shrinkage-Reducing Additive (SRA)
2.1.7. Basalt Microfiber (BF)
2.2. Mixture Proportions
2.3. Properties in the Fresh State
2.3.1. Flowability of Grouts
2.3.2. Unit Mass of the Mixture and Air Content
2.4. Air Permeability and Densification Level
2.5. Compressive Strength and Drying Shrinkage
2.5.1. Compressive Strength
2.5.2. Drying Shrinkage
2.6. Durability Index
Rapid Chloride Ion Permeability
3. Results and Discussion
3.1. Properties at the Fresh State
3.1.1. Flowability of Grouts
3.1.2. Unit Mass of the Mixtures and Air Content
3.2. Air Permeability and Densification Level
3.3. Compressive Strength and Drying Shrinkage
3.3.1. Compressive Strength
3.3.2. Drying Shrinkage
3.4. Durability Index
Rapid Chloride Ion Permeability
4. Conclusions
- An inversely proportional relationship was found between the amount of BF and the flowability in the flow table. The mixture with the highest amount of BF obtained the lowest fluidity, which corresponds to grout BF-0.10 (0.10% BF) with a flow of 130.5%.
- The bulk density of the fresh grout mix had a decreasing trend with increasing BF volume content, the main reason being that BF makes entrapped air during mixing more difficult to remove.
- The addition of BF in percentages of volume from 0.03 to 0.10 reduces the permeability to air; this shows that the BF can control the early cracks that allow the interconnectivity of pores.
- Compared to the control grout, BF grouts slightly increase compressive strength at early ages. In advanced ages, this improvement is no longer noticeable, and the compressive strength is almost equal to that of control.
- Mixes with BF in the amounts of 0.03–0.10% by volume reduce drying shrinkage more than a shrinkage reducing additive alone can.
- A proportional trend with the BF content was found to decrease the rapid permeability to chloride. For this reason, the BF-0.10 mixture was the one that obtained the best results. This benefit of BF is that it prevents cracking in the plastic stage, and consequently decreases the number of interconnected capillary pores.
- In all the tests, the performances of the laboratory grouts were superior to those of the commercial grouts, especially in the permeability tests.
- The use of microreinforced grouts with BF is recommended in prestressed concrete pipes because, in quantities of up to 0.10%, sufficient fluidity is maintained to design a grout. In addition, BF does not decrease compressive strength and reduces possible microcracks and permeability.
- BF grouts benefit sustainability by building more durable prestressed structures. In addition, BF is an abundant and environmentally friendly material that can save production, maintenance and energy costs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darwin, D.; Dolan, C.W.; Nilson, A.H. Design of Concrete Structures, 15th ed.; McGraw-Hill Education: New York, NY, USA, 2016; ISBN 978-0-07-339794-8. [Google Scholar]
- Khachaturian, N.; Gurfinkel, G. Prestressed Concrete; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- McCormac, J.C.; Brown, R.H. Design of Reinforced Concrete, 10th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 1-118-87910-4. [Google Scholar]
- PTI Committee; PTT. Post-Tensioning Terminology (PTT); Post-Tensioning Institute: Farmington Hills, MI, USA, 2013. [Google Scholar]
- Branson, D.E. Deformation of Concrete Structures; McGraw-Hill Companies: New York, NY, USA, 1976; ISBN 0-07-007240-X. [Google Scholar]
- Randell, A.; Aguirre, M.; Hamilton, H. Effects of Low Reactivity Fillers on the Performance of Post-Tensioning Grout. PTI J. Tech. Pap. 2015, 11, 17–27. [Google Scholar]
- ACI 222.2R-01; Corrosion of Prestressing Steels. American Concrete Institute: Farmington Hills, MI, USA, 2001.
- Garg, S.; Misra, S. Efficiency of NDT Techniques to Detect Voids in Grouted Post-Tensioned Concrete Ducts. Nondestruct. Test. Eval. 2021, 36, 366–387. [Google Scholar] [CrossRef]
- Vu, N.A.; Castel, A.; François, R. Effect of Stress Corrosion Cracking on Stress–Strain Response of Steel Wires Used in Prestressed Concrete Beams. Corros. Sci. 2009, 51, 1453–1459. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Z.; Yi, J.; Dai, L.; Ma, Y.; Zhang, X. Shear Behavior of Corroded Post-Tensioned Prestressed Concrete Beams with Full/Insufficient Grouting. KSCE J. Civ. Eng. 2020, 24, 1881–1892. [Google Scholar] [CrossRef]
- Choi, Y.-W.; Oh, S.-R.; Park, M.-S.; Choi, B.-K. The Experimental Study on the Fluidity Properties of Mortar Using Basalt Fiber and High Volume Fly Ash. Korean Recycl. Constr. Resour. Inst. 2014, 2, 345–353. [Google Scholar] [CrossRef]
- Minh, H.; Mutsuyoshi, H.; Taniguchi, H.; Niitani, K. Chloride-Induced Corrosion in Insufficiently Grouted Posttensioned Concrete Beams. J. Mater. Civ. Eng. 2008, 20, 85–91. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Ryu, G.-S.; Yuan, T.; Koh, K.-T.; Yoon, Y.-S. Cracking Behavior of Posttensioning Grout with Various Strand-to-Duct Area Ratios. J. Mater. Civ. Eng. 2015, 27, 04014197. [Google Scholar] [CrossRef]
- Xue, W.; Liu, X.; Jing, W.; Yao, Z.; Gao, C.; Li, H. Experimental Study and Mechanism Analysis of Permeability Sensitivity of Mechanically Damaged Concrete to Confining Pressure. Cem. Concr. Res. 2020, 134, 106073. [Google Scholar] [CrossRef]
- Cui, K.; Chang, J. Hydration, Reinforcing Mechanism, and Macro Performance of Multi-Layer Graphene-Modified Cement Composites. J. Build. Eng. 2022, 57, 104880. [Google Scholar] [CrossRef]
- Lin, W.-T.; Cheng, A.; Korniejenko, K.; Łach, M. Influence on Permeability and Pore Structure of Polyolefin Fiber Reinforced Concrete Containing Slag. APP 2022, 33, 337–343. [Google Scholar] [CrossRef]
- Jennings, H.M.; Tennis, P.D. Model for the Developing Microstructure in Portland Cement Pastes. J. Am. Ceram. Soc. 1994, 77, 3161–3172. [Google Scholar] [CrossRef]
- Kondraivendhan, B.; Bhattacharjee, B. Effect of Age and Water-Cement Ratio on Size and Dispersion of Pores in Ordinary Portland Cement Paste. ACI Mater. J. 2010, 107, 147. [Google Scholar]
- Zhao, R.; Weng, Y.; Tuan, C.Y.; Xu, A. The Influence of Water/Cement Ratio and Air Entrainment on the Electric Resistivity of Ionically Conductive Mortar. Materials 2019, 12, 1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, W.; Jing, W.; Wang, Z.; Zhang, H.; Lin, J. Mechanical Behavior and Constitutive Model of Lining Concrete in Triaxial Compression Infiltration Process under Pore Water Pressure. Archiv. Civ. Mech. Eng. 2022, 23, 20. [Google Scholar] [CrossRef]
- Wang, K.; Jansen, D.; Shah, S.; Karr, A. Permeability Study of Cracked Concrete. Cem. Concr. Res. 1997, 27, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Branston, J.; Das, S.; Kenno, S.Y.; Taylor, C. Influence of Basalt Fibres on Free and Restrained Plastic Shrinkage. Cem. Concr. Compos. 2016, 74, 182–190. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Ozbakkaloglu, T. Mechanical and Durability Properties of High-Strength Concrete Containing Steel and Polypropylene Fibers. Constr. Build. Mater. 2015, 94, 73–82. [Google Scholar] [CrossRef]
- Azhari, F.; Banthia, N. Cement-Based Sensors with Carbon Fibers and Carbon Nanotubes for Piezoresistive Sensing. Cem. Concr. Compos. 2012, 34, 866–873. [Google Scholar] [CrossRef]
- Bortz, D.R.; Merino, C.; Martin-Gullon, I. Carbon Nanofibers Enhance the Fracture Toughness and Fatigue Performance of a Structural Epoxy System. Compos. Sci. Technol. 2010, 71, 31. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Liu, J. Contribution of Hybrid Fibers on the Properties of the High-Strength Lightweight Concrete Having Good Workability. Cem. Concr. Res. 2005, 35, 913–917. [Google Scholar] [CrossRef]
- Dias, D.P.; Thaumaturgo, C. Fracture Toughness of Geopolymeric Concretes Reinforced with Basalt Fibers. Cem. Concr. Compos. 2005, 27, 49–54. [Google Scholar] [CrossRef]
- Gdoutos, E.E.; Konsta-Gdoutos, M.S.; Danoglidis, P.A. Portland Cement Mortar Nanocomposites at Low Carbon Nanotube and Carbon Nanofiber Content: A Fracture Mechanics Experimental Study. Cem. Concr. Compos. 2016, 70, 110–118. [Google Scholar] [CrossRef]
- Ghazy, A.; Bassuoni, M.; Maguire, E.; O’Loan, M. Properties of Fiber-Reinforced Mortars Incorporating Nano-Silica. Fibers 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, O.A.; Al Hawat, W. Influence of Fly Ash and Basalt Fibers on Strength and Chloride Penetration Resistance of Self-Consolidating Concrete. MSF 2016, 866, 3–8. [Google Scholar] [CrossRef]
- Muthukumarana, T.V.; Arachchi, M.A.V.H.M.; Somarathna, H.M.C.C.; Raman, S.N. A Review on the Variation of Mechanical Properties of Carbon Fibre-Reinforced Concrete. Constr. Build. Mater. 2023, 366, 130173. [Google Scholar] [CrossRef]
- Muzenski, S.; Flores-Vivian, I.; Sobolev, K. Ultra-High Strength Cement-Based Composites Designed with Aluminum Oxide Nano-Fibers. Constr. Build. Mater. 2019, 220, 177–186. [Google Scholar] [CrossRef]
- Niu, D.; Huang, D.; Fu, Q. Experimental Investigation on Compressive Strength and Chloride Permeability of Fiber-Reinforced Concrete with Basalt-Polypropylene Fibers. Adv. Struct. Eng. 2019, 22, 2278–2288. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Test Method for Evaluation of Plastic Shrinkage Cracking in Fiber-Reinforced Cementitious Materials. Exp. Tech. 2007, 31, 44–48. [Google Scholar] [CrossRef]
- Choi, S.; Panov, V.; Han, S.; Yun, K.-K. Natural Fiber-Reinforced Shotcrete Mixture: Quantitative Assessment of the Impact of Fiber on Fresh and Plastic Shrinkage Cracking Properties. Constr. Build. Mater. 2023, 366, 130032. [Google Scholar] [CrossRef]
- Cui, K.; Liang, K.; Chang, J.; Lau, D. Investigation of the Macro Performance, Mechanism, and Durability of Multiscale Steel Fiber Reinforced Low-Carbon Ecological UHPC. Constr. Build. Mater. 2022, 327, 126921. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Q.; Lombois-Burger, H.; Jia, Z.; Zhang, Z.; Niu, G.; Zhang, Y. Pore Structure, Internal Relative Humidity, and Fiber Orientation of 3D Printed Concrete with Polypropylene Fiber and Their Relation with Shrinkage. J. Build. Eng. 2022, 61, 105250. [Google Scholar] [CrossRef]
- Mao, J.; Liang, N.; Liu, X.; Zhong, Z.; Zhou, C. Investigation on Early-Age Cracking Resistance of Basalt-Polypropylene Fiber Reinforced Concrete in Restrained Ring Tests. J. Build. Eng. 2023, 106155. [Google Scholar] [CrossRef]
- Moelich, G.M.; Kruger, P.J.; Combrinck, R. Mitigating Early Age Cracking in 3D Printed Concrete Using Fibres, Superabsorbent Polymers, Shrinkage Reducing Admixtures, B-CSA Cement and Curing Measures. Cem. Concr. Res. 2022, 159, 106862. [Google Scholar] [CrossRef]
- Naaman, A.E.; Wongtanakitcharoen, T.; Hauser, G. Influence of Different Fibers on Plastic Shrinkage Cracking of Concrete. MJ 2005, 102, 49–58. [Google Scholar] [CrossRef]
- Shen, D.; Liu, C.; Luo, Y.; Shao, H.; Zhou, X.; Bai, S. Early-Age Autogenous Shrinkage, Tensile Creep, and Restrained Cracking Behavior of Ultra-High-Performance Concrete Incorporating Polypropylene Fibers. Cem. Concr. Compos. 2023, 138, 104948. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Influence of Polypropylene Fiber Geometry on Plastic Shrinkage Cracking in Concrete. Cem. Concr. Res. 2006, 36, 1263–1267. [Google Scholar] [CrossRef]
- Boghossian, E.; Wegner, L.D. Use of Flax Fibres to Reduce Plastic Shrinkage Cracking in Concrete. Cem. Concr. Compos. 2008, 30, 929–937. [Google Scholar] [CrossRef]
- Filho, R.D.T.; Ghavami, K.; Sanjuán, M.A.; England, G.L. Free, Restrained and Drying Shrinkage of Cement Mortar Composites Reinforced with Vegetable Fibres. Cem. Concr. Compos. 2005, 27, 537. [Google Scholar] [CrossRef]
- Shah, H.R.; Weiss, J. Quantifying Shrinkage Cracking in Fiber Reinforced Concrete Using the Ring Test. Mater. Struct. 2006, 9, 887–899. [Google Scholar] [CrossRef]
- Soroushian, P.; Ravanbakhsh, S. Control of plastic shrinkage cracking with specialty cellulose fibers. ACI Mater. J. 1998, 95, 429–435. [Google Scholar]
- Huang, W.-H. Improving the Properties of Cement–Fly Ash Grout Using Fiber and Superplasticizer. Cem. Concr. Res. 2001, 31, 1033–1041. [Google Scholar] [CrossRef]
- Jiang, C.; McCarthy, T.J.; Chen, D.; Dong, Q.Q. Influence of Basalt Fiber on Performance of Cement Mortar. Key Eng. Mater. 2010, 426–427, 93–96. [Google Scholar] [CrossRef]
- Jiang, C.; Fan, K.; Wu, F.; Chen, D. Experimental Study on the Mechanical Properties and Microstructure of Chopped Basalt Fibre Reinforced Concrete. Mater. Des. 2014, 58, 187–193. [Google Scholar] [CrossRef]
- Jiang, C.; Huang, S.; Zhu, Y.; Lin, Y.; Chen, D. Effect of Polypropylene and Basalt Fiber on the Behavior of Mortars for Repair Applications. Adv. Mater. Sci. Eng. 2016, 2016, e5927609. [Google Scholar] [CrossRef] [Green Version]
- Guler, S.; Akbulut, Z.F. The Single and Hybrid Use of Steel and Basalt Fibers on High-Temperature Resistance of Sustainable Ultra-High Performance Geopolymer Cement Mortars. Struct. Concr. 2023, in press. [CrossRef]
- Li, Z.; Shen, A.; Zeng, G.; Chen, Z.; Guo, Y. Research Progress on Properties of Basalt Fiber-Reinforced Cement Concrete. Mater. Today Commun. 2022, 33, 104824. [Google Scholar] [CrossRef]
- Lee, J.J.; Song, J.; Kim, H. Chemical Stability of Basalt Fiber in Alkaline Solution. Fibers Polym. 2014, 15, 2329–2334. [Google Scholar] [CrossRef]
- Rabinovich, F.N.; Zueva, V.N.; Makeeva, L.V. Stability of Basalt Fibers in a Medium of Hydrating Cement. Glass Ceram. 2001, 58, 431–434. [Google Scholar] [CrossRef]
- Sun, X.; Gao, Z.; Cao, P.; Zhou, C. Mechanical Properties Tests and Multiscale Numerical Simulations for Basalt Fiber Reinforced Concrete. Constr. Build. Mater. 2019, 202, 58–72. [Google Scholar] [CrossRef]
- Rybin, V.A.; Utkin, A.V.; Baklanova, N.I. Alkali Resistance, Microstructural and Mechanical Performance of Zirconia-Coated Basalt Fibers. Cem. Concr. Res. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Tensile Behavior Contrast of Basalt and Glass Fibers after Chemical Treatment. Mater. Des. 2010, 31, 4244–4250. [Google Scholar] [CrossRef]
- NMX-C414-ONNCEE-2004; Industria de La Construcción—Cementos Hidráulicos—Especificaciones y Métodos de Prueba. Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C.: Mexico City, Mexico, 2009.
- ASTM C150/C150M—15; Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C136 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. Available online: https://www.astm.org/c0136-06.html (accessed on 31 May 2022).
- ASTM C128 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. Available online: https://www.astm.org/c0128-15.html (accessed on 31 May 2022).
- ASTM C494 Standard Specification for Chemical Admixtures for Concrete. Available online: https://www.astm.org/c0494_c0494m-08.html (accessed on 31 May 2022).
- ASTM C1437 Standard Test Method for Flow of Hydraulic Cement Mortar. Available online: https://www.astm.org/c1437-20.html (accessed on 31 May 2022).
- ASTM C1107 Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Nonshrink). Available online: https://www.astm.org/c1107_c1107m-11.html (accessed on 31 May 2022).
- PTI Committee on Grouting Specifications. PTI M55.1-12 Specification for Grouting of Post-Tensioned Structures Addendum #1; Post-Tensioning Institute: Farmington Hills, MI, USA, 2013. [Google Scholar]
- ASTM C939 Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method). Available online: https://www.astm.org/c0939-10.html (accessed on 31 May 2022).
- ASTM C185 Standard Test Method for Air Content of Hydraulic Cement Mortar. Available online: https://www.astm.org/c0185-20.html (accessed on 31 May 2022).
- Proceq Torrent. Available online: https://www.screeningeagle.com/es/products/torrent (accessed on 3 March 2023).
- ASTM C109 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-Mm] Cube Specimens). Available online: https://www.astm.org/c0109_c0109m-20.html (accessed on 31 May 2022).
- ASTM C942 Standard Test Method for Compressive Strength of Grouts for Preplaced-Aggregate Concrete in the Laboratory. Available online: https://www.astm.org/c0942-15.html (accessed on 31 May 2022).
- ASTM C596 Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement. Available online: https://www.astm.org/c0596-18.html (accessed on 31 May 2022).
- ASTM C1202 Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. Available online: https://www.astm.org/c1202-19.html (accessed on 31 May 2022).
- Algin, Z.; Ozen, M. The Properties of Chopped Basalt Fibre Reinforced Self-Compacting Concrete. Constr. Build. Mater. 2018, 186, 678–685. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, X.; Lv, J. Experimental Study on the Resistance of Basalt Fibre-Reinforced Concrete to Chloride Penetration. Constr. Build. Mater. 2019, 223, 142–155. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Tahmouresi, B.; Saradar, A. Effects of Silica Fume on Mechanical Strength and Microstructure of Basalt Fiber Reinforced Cementitious Composites (BFRCC). Constr. Build. Mater. 2018, 162, 321–333. [Google Scholar] [CrossRef]
- Kosmatka, S.; Kerkhoff, B.; Panarese, W. Design and Control of Concrete Mixtures; Portland Cement Association: Skokie, IL, USA, 2002; ISBN 978-0-89312-217-1. [Google Scholar]
- Arivalangan, S. Study On the Compressive and Split Tensile Strength Properties of Basalt Fiber Concrete Members, Global Journal of Researches in Engineering. Civ. Struct. Eng. 2013, 12, 22–28. [Google Scholar]
- Allen, A.H. An Introduction to Prestressed Concrete; Global Cement and Concrete Association: London, UK, 1978; ISBN 0-7210-1090-3. [Google Scholar]
- Wang, L.; Yuan, P.; Zhang, X.; Dong, Y.; Ma, Y.; Zhang, J. Bond Behavior between Multi-Strand Tendons and Surrounding Grout: Interface Equivalent Modeling Method. Constr. Build. Mater. 2019, 226, 61–71. [Google Scholar] [CrossRef]
- Ralegaonkar, R.; Gavali, H.; Aswath, P.; Abolmaali, S. Application of Chopped Basalt Fibers in Reinforced Mortar: A Review. Constr. Build. Mater. 2018, 164, 589–602. [Google Scholar] [CrossRef]
- Shi, C. Effect of Mixing Proportions of Concrete on Its Electrical Conductivity and the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277) Results. Cem. Concr. Res. 2004, 34, 537–545. [Google Scholar] [CrossRef]
- Ayub, T.; Shafiq, N.; Khan, S.U.; Nuruddin, M.F. Durability of Concrete with Different Mineral Admixtures: A Review. Int. J. Civ. Archit. Struct. Constr. Eng. 2013, 7, 13. [Google Scholar]
- Justice, J.M.; Kennison, L.H.; Mohr, B.J.; Beckwith, S.L.; McCormick, L.E.; Wiggins, B.; Zhang, Z.Z.; Kurtis, K.E. Comparison of Two Metakaolins and a Silica Fume Used as Supplementary Cementitious Materials. In Proceedings of the 7th International Symposium on Utilization of High-Strength/High Performance Concrete, Washington, DC, USA, 20–24 June 2005; p. 89. [Google Scholar]
- Hosseini, P.; Abolhasani, M.; Mirzaei, F.; Kouhi Anbaran, M.R.; Khaksari, Y.; Famili, H. Influence of Two Types of Nanosilica Hydrosols on Short-Term Properties of Sustainable White Portland Cement Mortar. J. Mater. Civ. Eng. 2018, 30, 04017289. [Google Scholar] [CrossRef]
Chemical Composition | OPC (%) | GC1 (%) | GC2 (%) |
---|---|---|---|
CaO | 66.77 | 61.85 | 55.44 |
SiO2 | 20.16 | 26.38 | 29.30 |
Al2O3 | 1.72 | 1.31 | 2.01 |
Fe2O3 | 4.85 | 4.52 | 5.48 |
MgO | 0.37 | 0.27 | 0.53 |
SO3 | 3.63 | 3.19 | 4.84 |
K2O | 1.12 | 1.10 | 1.20 |
TiO2 | 0.36 | 0.30 | 0.40 |
Others | 1.02 | 1.08 | 0.80 |
Relative density (g/cm3) | 3.05 | 2.73 | 2.74 |
Properties | Amount |
---|---|
Fineness modulus | 2.80 |
Water absorption (%) | 1.42 |
Density-Dd (g/cm3) a | 2.59 |
Density-Dssd (g/cm3) b | 2.63 |
Diameter (µm) | Length (mm) | Elongation (%) | Density (g/cm³) | Elastic Modulus (GPa) | Tensile Strength (MPa) | Water Absorption (%) |
---|---|---|---|---|---|---|
13–15 | 21 | 3.1–3.2 | 2.70 | 93–110 | 2800–4800 | <0.5 |
Mixes | OPC (kg/m³) | FA (kg/m³) | Water (kg/m³) | SPA (%) a | SRA (%) a | BF (%) b |
---|---|---|---|---|---|---|
Control | 603 | 1413 | 241 | 0.61 | 2.00 | -- |
BF-0.03 | 603 | 1413 | 241 | 0.61 | 2.00 | 0.03 |
BF-0.07 | 603 | 1412 | 240 | 0.61 | 2.00 | 0.07 |
BF-0.10 | 603 | 1411 | 240 | 0.61 | 2.00 | 0.10 |
CG-1 | -- | 1833 c | 291 | -- | -- | -- |
CG-2 | -- | 1745 c | 346 | -- | -- | -- |
Mixture | Density of Mixture (g/cm3) | Air Content (%) | Flow |
---|---|---|---|
Control | 2.275 | 0.64% | >max allowed in the flow table |
BF-0.03 | 2.246 | 1.83% | >max allowed in the flow table |
BF-0.07 | 2.247 | 1.91% | >max allowed in the flow table |
BF-0.10 | 2.231 | 2.53% | 130.5% (ASTM C1107-grouts) |
CG-1 | 2.129 | 3.50% | 127% (ASTM C1437-mortars) |
CG-2 | 2.088 | 1.86% | 30 s (ASTM C939-liquid) |
Concrete Quality | Index | KT (10−16 m2) |
---|---|---|
Very bad | 5 | >10 |
Bad | 4 | 1.0–10 |
Normal | 3 | 0.1–1.0 |
Good | 2 | 0.01–0.1 |
Very good | 1 | <0.01 |
Mixture | KT (10−16 m2) | Grout Quality |
---|---|---|
Control | 0.002 | Very good |
BF-0.03 | 0.001 | Very good |
BF-0.07 | 0.001 | Very good |
BF-0.10 | 0.001 | Very good |
CG-1 | 1.367 | Bad |
CG-2 | 0.163 | Normal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata-Padilla, J.R.; Juárez-Alvarado, C.A.; Durán-Herrera, A.; Baltazar-Zamora, M.A.; Terán-Torres, B.T.; Vázquez-Leal, F.R.; Mendoza-Rangel, J.M. Portland Cement-Based Grouts Enhanced with Basalt Fibers for Post-Tensioned Concrete Duct Filling. Materials 2023, 16, 2842. https://doi.org/10.3390/ma16072842
Zapata-Padilla JR, Juárez-Alvarado CA, Durán-Herrera A, Baltazar-Zamora MA, Terán-Torres BT, Vázquez-Leal FR, Mendoza-Rangel JM. Portland Cement-Based Grouts Enhanced with Basalt Fibers for Post-Tensioned Concrete Duct Filling. Materials. 2023; 16(7):2842. https://doi.org/10.3390/ma16072842
Chicago/Turabian StyleZapata-Padilla, José R., César A. Juárez-Alvarado, Alejandro Durán-Herrera, Miguel A. Baltazar-Zamora, Bernardo. T. Terán-Torres, Francisco R. Vázquez-Leal, and José M. Mendoza-Rangel. 2023. "Portland Cement-Based Grouts Enhanced with Basalt Fibers for Post-Tensioned Concrete Duct Filling" Materials 16, no. 7: 2842. https://doi.org/10.3390/ma16072842
APA StyleZapata-Padilla, J. R., Juárez-Alvarado, C. A., Durán-Herrera, A., Baltazar-Zamora, M. A., Terán-Torres, B. T., Vázquez-Leal, F. R., & Mendoza-Rangel, J. M. (2023). Portland Cement-Based Grouts Enhanced with Basalt Fibers for Post-Tensioned Concrete Duct Filling. Materials, 16(7), 2842. https://doi.org/10.3390/ma16072842