A New Strategy to Improve the Toughness of Epoxy Thermosets—By Introducing Poly(ether nitrile ketone)s Containing Phthalazinone Structures
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Methods
2.2. Instrumentation and Methods
3. Results and Discussion
3.1. Curing Behavior
3.2. FT-IR Analysis
3.3. Glass Transition Temperatures (Tg)
3.4. Thermomechanical Properties
3.5. Mechanical Properties
3.6. Low−Temperature Properties
3.7. Thermal Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lian, Q.; Chen, H.; Luo, Y.; Li, Y.; Cheng, J.; Liu, Y. Toughening mechanism based on the physical entanglement of branched epoxy resin in the non-phase-separated inhomogeneous crosslinking network: An experimental and molecular dynamics simulation study. Polymer 2022, 247, 124754. [Google Scholar] [CrossRef]
- Tian, J.; Li, C.; Xian, G. Reciprocating friction and wear performances of nanometer sized-TiO2 filled epoxy composites. Polym. Compos. 2021, 42, 2061–2072. [Google Scholar] [CrossRef]
- Gholinezhad, F.; Golhosseini, R.; Moini Jazani, O. Synthesis, characterization, and properties of silicone grafted epoxy/acrylonitrile butadiene styrene/graphene oxide nanocomposite with high adhesion strength and thermal stability. Polym. Compos. 2022, 43, 1665–1684. [Google Scholar] [CrossRef]
- Tangthana-umrung, K.; Zhang, X.; Gresil, M. Synergistic toughening on hybrid epoxy nanocomposites by introducing engineering thermoplastic and carbon-based nanomaterials. Polymer 2022, 245, 124703. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Estaji, S.; Paydayesh, A.; Arjmand, M.; Jafari, S.H.; Nouranian, S.; Khonakdar, H.A. A review of recent progress in improving the fracture toughness of epoxy-based composites using carbonaceous nanofillers. Polym. Compos. 2022, 43, 1871–1886. [Google Scholar] [CrossRef]
- Jin, Q.; Misasi, J.M.; Wiggins, J.S.; Morgan, S.E. Simultaneous reinforcement and toughness improvement in an aromatic epoxy network with an aliphatic hyperbranched epoxy modifier. Polymer 2015, 73, 174–182. [Google Scholar] [CrossRef]
- Shen, Y.B.; Wang, B.L.; Li, D.; Xu, X.R.; Liu, Y.Y.; Huang, Y.D.; Hu, Z. Toughening shape-memory epoxy resins via sacrificial hydrogen bonds. Polym. Chem. 2022, 13, 1130–1139. [Google Scholar] [CrossRef]
- Su, W.C.; Tsai, F.C.; Huang, C.F.; Dai, L.Z.; Kuo, S.W. Flexible Epoxy Resins Formed by Blending with the Diblock Copolymer PEO-b-PCL and Using a Hydrogen-Bonding Benzoxazine as the Curing Agent. Polymers 2019, 11, 11020201. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Li, S.H.; Xia, J.L.; Li, M.; Ding, H.Y.; Xu, L.N.; Yang, X.H. Preparation and Properties of Polyether Aliphatic Polymerized Amide as a Vegetable Oil-Based Epoxy Curing Agent. ACS Omega 2019, 4, 6238–6244. [Google Scholar] [CrossRef] [Green Version]
- Akbolat, M.C.; Katnam, K.B.; Soutis, C.; Potluri, P.; Sprenger, S.; Taylor, J. On mode-I and mode-II interlaminar crack migration and R-curves in carbon/epoxy laminates with hybrid toughening via core-shell rubber particles and thermoplastic micro-fibre veils. Compos. Part B Eng. 2022, 238, 109900. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Estaji, S.; Javidi, M.R.; Paydayesh, A.; Khonakdar, H.A.; Arjmand, M.; Rostami, E.; Jafari, S.H. Toughening of epoxy resin systems using core-shell rubber particles: A literature review. J. Mater Sci. 2021, 56, 18345–18367. [Google Scholar] [CrossRef]
- Li, L.; Peng, W.; Liu, L.; Zheng, S. Toughening of epoxy by nanostructures with ABA triblock copolymers: An influence of organosilicon modification of block copolymer. Polym. Eng. Sci. 2022, 62, 392–404. [Google Scholar] [CrossRef]
- Zhao, X.L.; Hou, G.X.; Yu, S.W.; Wang, M.Y. Preparation of HNTs-d-GO hybrid nanoparticles for gallic acid epoxy composites with improved thermal and mechanical properties. Polym. Compos. 2022, 43, 5133–5144. [Google Scholar] [CrossRef]
- Wang, T.-T.; Huang, P.; Li, Y.-Q.; He, N.; Fu, S.-Y. Epoxy nanocomposites significantly toughened by both poly(sulfone) and graphene oxide. Compos. Commun 2019, 14, 55–60. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, L.; Liang, G.Z.; Gu, A.J. Tough epoxy/cyanate ester resins with improved thermal stability, lower dielectric constant and loss based on unique hyperbranched polysiloxane liquid crystalline. Polym. Advan. Technol. 2015, 26, 1608–1618. [Google Scholar] [CrossRef]
- Sinh, L.H.; Son, B.T.; Trung, N.N.; Lim, D.G.; Shin, S.; Bae, J.Y. Improvements in thermal, mechanical, and dielectric properties of epoxy resin by chemical modification with a novel amino-terminated liquid-crystalline copoly(ester amide). React. Funct. Polym. 2012, 72, 542–548. [Google Scholar] [CrossRef]
- Punchaipetch, P.; Ambrogi, V.; Giamberini, M.; Brostow, W.; Carfagna, C.; D’Souza, N.A. Epoxy+liquid crystalline epoxy coreacted networks: II. Mechanical properties. Polymer 2002, 43, 839–848. [Google Scholar] [CrossRef]
- Van Velthem, P.; Ballout, W.; Horion, J.; Janssens, Y.A.; Destoop, V.; Pardoen, T.; Bailly, C. Morphology and fracture properties of toughened highly crosslinked epoxy composites: A comparative study between high and low T-g tougheners. Compos. Part B Eng. 2016, 101, 14–20. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Cheng, C.; Wang, M.; Yang, Z.; Yang, Y.; Yang, H.; Yu, M. Synergetic Improvement of Interlaminar Fracture Toughness in Carbon Fiber/Epoxy Composites Interleaved with PES/PEK-C Hybrid Nanofiber Veils. Adv. Fiber Mater. 2022, 4, 1081–1093. [Google Scholar] [CrossRef]
- Ma, T.Y.; Sun, Y.K.; Yao, J.W. Influence of carbon nanotubes/polyetherketone-cardo interlayer structure on mode II interlaminar fracture toughness of the interleaved carbon fiber reinforced epoxy composites. J. Appl. Polym. Sci. 2022, 139, e52671. [Google Scholar] [CrossRef]
- Daelemans, L.; van der Heijden, S.; De Baere, I.; Muhammad, I.; Van Paepegem, W.; Rahier, H.; De Clerck, K. Bisphenol A based polyester binder as an effective interlaminar toughener. Compos. Part B Eng. 2015, 80, 145–153. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, X.H.; Jiang, L.; Qiao, J.L. Advances in toughened polymer materials by structured rubber particles. Prog. Polym. Sci. 2019, 98, 101160. [Google Scholar] [CrossRef]
- Goyat, M.S.; Hooda, A.; Gupta, T.K.; Kumar, K.; Halder, S.; Ghosh, P.K.; Dehiya, B.S. Role of non-functionalized oxide nanoparticles on mechanical properties and toughening mechanisms of epoxy nanocomposites. Ceram. Int. 2021, 47, 22316–22344. [Google Scholar] [CrossRef]
- Zhao, L.W.; Li, H.F.; Qiao, Y.J.; Bai, X.F.; Wang, D.Z.; Qu, C.Y.; Xiao, W.B.; Liu, Y.; Zhang, J. Accelerated-curing epoxy structural film adhesive for bonding lightweight honeycomb sandwich structures. J. Appl. Polym. Sci. 2023, 140, 53458. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Gohel, G.; Vasudevan, D.; Leong, K.F.; Gerard, P. On the Mode II fracture toughness, failure, and toughening mechanisms of wholly thermoplastic composites with ultra-lightweight thermoplastic fabrics and innovative Elium (R) resin. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107115. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Robert, T.M.; Mathew, D.; Desakumaran Suma, D.; Thomas, D. Novel epoxy resin adhesives toughened by functionalized poly (ether ether ketone) s. Int. J. Adhes. Adhes. 2021, 106, 102816. [Google Scholar] [CrossRef]
- Rehman, M.M.; Shaker, K.; Nawab, Y. Effect of poly ether ether ketone particles on v-notched shear and drop weight impact behavior of carbon/epoxy composite. Polym. Compos. 2022, 43, 3219–3227. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Jia, H.; Qiao, Y.; Dang, X.X.; Weng, Z.H.; Chen, Y.S.; Zou, J.X.; Jian, X.G. Effect of electrospun PPENK nanofiber loaded with ZnO nanowires on the mode II fracture toughness, flexural properties and ILSS of CF/poly (phthalazinone ether ketone) composites. Compos. Part B Eng. 2022, 244, 110172. [Google Scholar] [CrossRef]
- Niu, Y.A.; Ma, Y.H.; Song, B.L.; Yang, L.; Wang, L.; Zheng, S.J.; Zhang, X. Design, synthesis, and water resistance properties of bis(4-maleimidephenyl) adamantane and hybrid resins. J. Appl. Polym. Sci. 2022, 139, 51692. [Google Scholar] [CrossRef]
- Wang, B.; Li, N.; Bao, Q.G.; Liu, D.M.; Guo, H.J.; Li, G.Y.; Zheng, G.D.; Zhang, G.S.; Qiao, Y.; Weng, Z.H.; et al. Toughening and strengthening of low-temperature resistant epoxy resins by introducing high-performance thermoplastic resin with phthalazinone structure. Polymer 2023, 266, 125619. [Google Scholar] [CrossRef]
- Liu, C.H.; Liu, W.Q.; He, S.; Jiang, C.; Xie, Y.K.; Yang, M.P.; Shi, H.Y.; Wang, Z.F. Highly exfoliated epoxy/clay nanocomposites filled with novel cationic fluorinated polyacrylate modified montmorillonite: Morphology and mechanical properties. Polym. Compos. 2019, 40, 4266–4280. [Google Scholar] [CrossRef]
- Zong, L.; Li, J.; Liu, C.; Zu, Y.; Li, N.; Wang, J.; Jian, X. Polybenzoxazine thermosets with enhanced toughness via blending with phthalazinone-bearing thermal plastic copoly(aryl ether nitrile)s. J. Appl. Polym. Sci. 2019, 137, 48508. [Google Scholar] [CrossRef]
- Sodeifian, G.; Ghaseminejad, S.; Yousefi, A.A. Preparation of polypropylene/short glass fiber composite as Fused Deposition Modeling (FDM) filament. Results Phys. 2019, 12, 205–222. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Su, Q.; He, J.; Li, Y.; Xie, J.; Yi, G. Synthesis of a novel hyperbranched polyester with carboxyl end groups applied to UV-curable waterborne coating. J. Coat. Technol. Res. 2021, 18, 259–269. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Yuan, Y.; Gao, C.; Cui, Y.; Li, S.; Wang, H.; Peng, C.; Liu, X.; Wu, Z.; et al. A new strategy to improve the toughness of epoxy thermosets by introducing the thermoplastic epoxy. Polymer 2022, 240, 124518. [Google Scholar] [CrossRef]
- Luo, X.; Liu, X.-F.; Ding, X.-M.; Chen, L.; Chen, S.-C.; Wang, Y.-Z. Effects of curing temperature on the structure and properties of epoxy resin-poly(ε-caprolactam) blends. Polymer 2021, 228, 123940. [Google Scholar] [CrossRef]
- Ma, H.; Aravand, M.A.; Falzon, B.G. Phase morphology and mechanical properties of polyetherimide modified epoxy resins: A comparative study. Polymer 2019, 179, 121640. [Google Scholar] [CrossRef]
- Xiao, L.; Huang, J.; Wang, Y.; Chen, J.; Liu, Z.; Nie, X. Tung Oil-Based Modifier Toughening Epoxy Resin by Sacrificial Bonds. ACS Sustain. Chem. Eng. 2019, 7, 17344–17353. [Google Scholar] [CrossRef]
- Voleppe, Q.; Ballout, W.; Van Velthem, P.; Bailly, C.; Pardoen, T. Enhanced fracture resistance of thermoset/thermoplastic interfaces through crack trapping in a morphology gradient. Polymer 2021, 218, 123497. [Google Scholar] [CrossRef]
- Muñoz, B.K.; del Bosque, A.; Sánchez, M.; Utrilla, V.; Prolongo, S.G.; Prolongo, M.G.; Ureña, A. Epoxy resin systems modified with ionic liquids and ceramic nanoparticles as structural composites for multifunctional applications. Polymer 2021, 214, 123233. [Google Scholar] [CrossRef]
- Hussein, A.; Sarkar, S.; Lee, K.; Kim, B. Cryogenic fracture behavior of epoxy reinforced by a novel graphene oxide/poly(p-phenylenediamine) hybrid. Compos. Part B Eng. 2017, 129, 133–142. [Google Scholar] [CrossRef]
- Liu, C.; Qiao, Y.; Jia, H.; Li, N.; Chen, Y.S.; Jian, X.G. Improved mechanical properties of basalt fiber/phthalonitrile composites modified by thermoplastic Poly(phthalazinone ether nitrile)s. Polymer 2021, 228, 123974. [Google Scholar] [CrossRef]
- Li, Y.Z.; Liu, C.D.; Liu, W.T.; Cheng, X.T.; Zhang, A.; Zhang, S.H.; Liu, C.; Li, N.; Jian, X.G. Apatite Formation Induced by Chitosan/Gelatin Hydrogel Coating Anchored on Poly(aryl ether nitrile ketone) Substrates to Promote Osteoblastic Differentiation. Macromol. Biosci. 2021, 21, 2100262. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.; Shindo, Y.; Watanabe, S.; Narita, F. Three-dimensional stress analysis of cracked satin woven carbon fiber reinforced/polymer composites under tension at cryogenic temperatures. Cryogenics 2012, 52, 784–792. [Google Scholar] [CrossRef]
- Yan, M.L.; Jiao, W.C.; Li, J.; Huang, Y.F.; Chu, Z.M.; Chen, X.D.; Shen, F.; Wang, Y.; Wang, R.G.; He, X.D. Enhancement of the cryogenic-interfacial-strength of carbon fiber composites by chemical grafting of graphene oxide/attapulgite onT300. Polym. Compos. 2020, 41, 5072–5081. [Google Scholar] [CrossRef]
- Chang, W.; Rose, L.R.F.; Islam, M.S.; Wu, S.; Peng, S.; Huang, F.; Kinloch, A.J.; Wang, C.H. Strengthening and toughening epoxy polymer at cryogenic temperature using cupric oxide nanorods. Compos. Sci. Technol. 2021, 208, 108762. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Li, B.-G. Poly(1,5-pentylene-co-2,2,4,4-tetramethyl cyclobutylene terephthalate) copolyesters with high Tg and improved ductility and thermal stability. Polymer 2021, 232, 124152. [Google Scholar] [CrossRef]
- Xu, C.-A.; Qu, Z.; Meng, H.; Chen, B.; Wu, X.; Cui, X.; Wang, K.; Wu, K.; Shi, J.; Lu, M. Effect of polydopamine-modified multi-walled carbon nanotubes on the thermal stability and conductivity of UV-curable polyurethane/polysiloxane pressure-sensitive adhesives. Polymer 2021, 223, 123615. [Google Scholar] [CrossRef]
Blend Systems | Ea by Kissinger Equation (kJ/mol) | Ea by Ozawa Equation (kJ/mol) | Ea Average (kJ/mol) | Ti,β = 0 (°C) | Ttop,β = 0 (°C) | Tf,β = 0 (°C) |
---|---|---|---|---|---|---|
E51/DDS | 52.6 | 67.4 | 60.0 | 134 | 201 | 248 |
10 phr-PPENK/E51 | 50.4 | 65.4 | 57.9 | 129 | 200 | 241 |
Blend Systems | Tg (°C) | Initial-Er | |
---|---|---|---|
DSC | DMA | (GPa) | |
E51 | 154 | 166 | 3.27 |
3 phr-PPENK/E51 | 208 | 186 | 3.15 |
5 phr-PPENK/E51 | 214 | 188 | 3.00 |
10 phr-PPENK/E51 | 211 | 206 | 2.90 |
15 phr-PPENK/E51 | 213 | 201 | 2.88 |
20 phr-PPENK/E51 | 200 | 198 | 2.87 |
Blends | Content | Improvement Rate | Ref. |
---|---|---|---|
GO/PSF/EP | 5.2 phr | 89.9% | [14] |
LCP/EP | 10 phr | 30% | [16] |
DGE-DHBP/EP | 10% | 42.2% | [17] |
PKHH/EP | 10% | 81.5% | [18] |
PES/PEK−C/EP | 15% | 99.8% | [19] |
PET/EP | 4.8% | 30.0% | [21] |
PPENK/EP | 10 phr | 131.0% | This work |
Blend Systems | Td5% (°C) | Tdmax (°C) | Char Yield (%) |
---|---|---|---|
E51 | 392 | 417 | 8.35 |
3 phr−PPENK/E51 | 395 | 420 | 12.99 |
5 phr−PPENK/E51 | 391 | 421 | 14.95 |
10 phr−PPENK/E51 | 393 | 418 | 17.97 |
15 phr−PPENK/E51 | 390 | 417 | 17.19 |
20 phr−PPENK/E51 | 391 | 417 | 20.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Wang, B.; Fu, X.; Li, N.; Li, G.; Zheng, G.; Wang, Z.; Liu, C.; Chen, Y.; Weng, Z.; et al. A New Strategy to Improve the Toughness of Epoxy Thermosets—By Introducing Poly(ether nitrile ketone)s Containing Phthalazinone Structures. Materials 2023, 16, 2878. https://doi.org/10.3390/ma16072878
Guo H, Wang B, Fu X, Li N, Li G, Zheng G, Wang Z, Liu C, Chen Y, Weng Z, et al. A New Strategy to Improve the Toughness of Epoxy Thermosets—By Introducing Poly(ether nitrile ketone)s Containing Phthalazinone Structures. Materials. 2023; 16(7):2878. https://doi.org/10.3390/ma16072878
Chicago/Turabian StyleGuo, Hongjun, Bing Wang, Xin Fu, Nan Li, Guiyang Li, Guodong Zheng, Zaiyu Wang, Cheng Liu, Yousi Chen, Zhihuan Weng, and et al. 2023. "A New Strategy to Improve the Toughness of Epoxy Thermosets—By Introducing Poly(ether nitrile ketone)s Containing Phthalazinone Structures" Materials 16, no. 7: 2878. https://doi.org/10.3390/ma16072878
APA StyleGuo, H., Wang, B., Fu, X., Li, N., Li, G., Zheng, G., Wang, Z., Liu, C., Chen, Y., Weng, Z., Zhang, S., & Jian, X. (2023). A New Strategy to Improve the Toughness of Epoxy Thermosets—By Introducing Poly(ether nitrile ketone)s Containing Phthalazinone Structures. Materials, 16(7), 2878. https://doi.org/10.3390/ma16072878