Threshold-Voltage Extraction Methods for Atomically Deposited Disordered ZnO Thin-Film Transistors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.; Kwon, H.J.; Lee, S.; Shim, H.; Chun, Y.; Choi, W.; Kwack, J.; Han, D.; Song, M.; Kim, S.; et al. Low-Power Flexible Organic Light-Emitting Diode Display Device. Adv. Mater. 2011, 23, 3511–3516. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.P.; Li, Y.Q.; Tang, J.X. Recent Advances in Flexible Organic Light-Emitting Diodes. J. Mater. Chem. C 2016, 4, 9116–9142. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Zhang, B.; Wang, H.; Xin, Q.; Song, A. Flexible Indium-Gallium-Zinc-Oxide Schottky Diode Operating beyond 2.45 GHz. Nat. Commun. 2015, 6, 7561. [Google Scholar] [CrossRef] [Green Version]
- Ono, S.; Miwa, K.; Maekawa, Y.; Tsujimura, T. VT Compensation Circuit for AM OLED Displays Composed of Two TFTs and One Capacitor. IEEE Trans. Electron Devices 2007, 54, 462–467. [Google Scholar] [CrossRef]
- Li, Q.; Lee, C.-H.; Asad, M.; Wong, W.S.; Sachdev, M. A 6-TFT Charge-Transfer Self-Compensating Pixel Circuit for Flexible Displays. IEEE J. Electron Devices Soc. 2019, 7, 792–800. [Google Scholar] [CrossRef]
- Anzi, L.; Tuktamyshev, A.; Fedorov, A.; Zurutuza, A.; Sanguinetti, S.; Sordan, R. Controlling the Threshold Voltage of a Semiconductor Field-Effect Transistor by Gating Its Graphene Gate. npj 2d Mater. Appl. 2022, 6, 28. [Google Scholar] [CrossRef]
- Chen, C.L.; Chen, W.F.; Zhou, L.; Wu, W.J.; Xu, M.; Wang, L.; Peng, J.B. A Physics-Based Model of Threshold Voltage for Amorphous Oxide Semiconductor Thin-Film Transistors. AIP Adv. 2016, 6, 035025. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Nathan, A. Conduction Threshold in Accumulation-Mode InGaZnO Thin Film Transistors. Sci. Rep. 2016, 6, 22567. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.H.; Kim, T.; Ueda, S.; Shiah, Y.S.; Hosono, H.; Kim, J.; Jeong, J.K. High-Performance Indium Gallium Tin Oxide Transistors with an Al2O3Gate Insulator Deposited by Atomic Layer Deposition at a Low Temperature of 150 °C: Roles of Hydrogen and Excess Oxygen in the Al2O3 Dielectric Film. ACS Appl. Mater. Interfaces 2021, 13, 28451–28461. [Google Scholar] [CrossRef]
- Ortiz-Conde, A.; García-Sánchez, F.J.; Muci, J.; Terán Barrios, A.; Liou, J.J.; Ho, C.S. Revisiting MOSFET Threshold Voltage Extraction Methods. Microelectron. Reliab. 2013, 53, 90–104. [Google Scholar] [CrossRef]
- So, M.; Colinge, J. Conduction Mechanisms in Thin-Film Accumulation-mode SOI p-channel MOSFETs. IEEE Trans. Electron Devices 1990, 37, 718–723. [Google Scholar]
- Liang, K.; Xu, X.; Zhou, Y.; Wang, X.; McCulley, C.M.; Wang, L.; Kulkarni, J.; Dodabalapur, A. Nanospike Electrodes and Charge Nanoribbons: A New Design for Nanoscale Thin-Film Transistors. Sci. Adv. 2022, 8, eabm1154. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wie, C.R. Capacitance-Voltage Characteristics and Device Simulation of Bias Temperature Stressed a-Si:H TFTs. Solid. State. Electron. 2010, 54, 259–267. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping*. J. Disp. Technol. 2009, 5, 468–483. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, Y.; Yang, G.; Chuai, X.; Lu, W.; Liu, D.; Chen, Q.; Duan, X.; Huang, S.; Su, Y.; et al. Analytical Surface Potential-Based Compact Model for Independent Dual Gate a-IGZO TFT. IEEE Trans. Electron Devices 2021, 68, 2049–2055. [Google Scholar] [CrossRef]
- Horowitz, G.; Delannoy, P. An Analytical Model for Organic-Based Thin-Film Transistors. J. Appl. Phys. 1991, 70, 469–475. [Google Scholar] [CrossRef]
- Lu, N.; Jiang, W.; Wu, Q.; Geng, D.; Li, L.; Liu, M. A Review for Compact Model of Thin-Film Transistors (TFTs). Micromachines 2018, 9, 599. [Google Scholar] [CrossRef] [Green Version]
- Migliorato, P.; Seok, M.; Jang, J. Determination of Flat Band Voltage in Thin Film Transistors: The Case of Amorphous-Indium Gallium Zinc Oxide. Appl. Phys. Lett. 2012, 100, 073506. [Google Scholar] [CrossRef]
- Campbell, A.J.; Rawcliffe, R.; Guite, A.; Faria, J.C.D.; Mukherjee, A.; McLachlan, M.A.; Shkunov, M.; Bradley, D.D.C. Charge-Carrier Density Independent Mobility in Amorphous Fluorene-Triarylamine Copolymers. Adv. Funct. Mater. 2016, 26, 3720–3729. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Jin, J.W.; Mosser, V.; Bonnassieux, Y.; Horowitz, G. A Compact Model and Parameter Extraction Method for a Staggered OFET with Power-Law Contact Resistance and Mobility. IEEE Trans. Electron Devices 2019, 66, 4894–4900. [Google Scholar] [CrossRef]
- Yoon, M.; Lee, J. Intrinsic Device Parameter Extraction Method for Zinc Oxide-Based Thin-Film Transistors. Appl. Phys. Express 2021, 14, 124003. [Google Scholar] [CrossRef]
- Yoon, M.; Park, J.; Tran, D.C.; Sung, M.M. Fermi-Level Engineering of Atomic Layer-Deposited Zinc Oxide Thin Films for a Vertically Stacked Inverter. ACS Appl. Electron. Mater. 2020, 2, 537–544. [Google Scholar] [CrossRef]
- Li, J.; Ding, X.W.; Zhang, J.H.; Zhang, H.; Jiang, X.Y.; Zhang, Z.L. Improving Electrical Performance and Bias Stability of HfInZnO-TFT with Optimizing the Channel Thickness. AIP Adv. 2013, 3, 102132. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Khim, T.; Bak, S.; Song, J.; Choi, B. Threshold Voltage Instability and Polyimide Charging Effects of LTPS TFTs for Flexible Displays. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pesavento, P.V.; Chesterfield, R.J.; Newman, C.R.; Frisble, C.D. Gated Four-Probe Measurements on Pentacene Thin-Film Transistors: Contact Resistance as a Function of Gate Voltage and Temperature. J. Appl. Phys. 2004, 96, 7312–7324. [Google Scholar] [CrossRef]
- Chen, C.Y.; Kanicki, J. Gated-Four-Probe a-Si:H TFT Structure: A New Technique to Measure the Intrinsic Performance of a-Si:H TFT. IEEE Electron Device Lett. 1997, 18, 340–342. [Google Scholar] [CrossRef]
- Yoon, M.; Lee, J. Enhanced Channel Modulation in Aluminum- and Hydrogen-Doped Zinc-Oxide-Based Transistors by Complementary Dual-Gate Operation. Appl. Surf. Sci. 2022, 585, 152662. [Google Scholar] [CrossRef]
- Kalb, W.L.; Batlogg, B. Calculating the Trap Density of States in Organic Field-Effect Transistors from Experiment: A Comparison of Different Methods. Phys. Rev. B-Condens. Matter Mater. Phys. 2010, 81, 035327. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.; Lee, J. Charge Transfer Doping with an Organic Layer to Achieve a High-Performance p-Type WSe2 Transistor. J. Mater. Chem. C 2021, 9, 9592–9598. [Google Scholar] [CrossRef]
- Kim, S.; Ha, T.J.; Sonar, P.; Dodabalapur, A. Density of Trap States in a Polymer Field-Effect Transistor. Appl. Phys. Lett. 2014, 105, 133302. [Google Scholar] [CrossRef]
- Geiger, M.; Schwarz, L.; Zschieschang, U.; Manske, D.; Pflaum, J.; Weis, J.; Klauk, H.; Weitz, R.T. Quantitative Analysis of the Density of Trap States in Semiconductors by Electrical Transport Measurements on Low-Voltage Field-Effect Transistors. Phys. Rev. Appl. 2018, 10, 044023. [Google Scholar] [CrossRef]
- Janotti, A.; Van De Walle, C.G. Fundamentals of Zinc Oxide as a Semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef] [Green Version]
μ (cm2V−1s−1) | Power-Law Exponent | Vturn-on (V) | Vth (V) | |||
---|---|---|---|---|---|---|
Linear Fitting (Vgs) | Ids/gm | Ea Analysis | ||||
ZnO | 3.1 | 0.92 | 8 | 25/36/42 (40/60/80) | 15 | 15 |
1 nm thin Al2O3-coated ZnO | 3.9 | 0.87 | −5 | 21/28/41 (40/60/80) | 9 | 9 |
3 nm thin Al2O3-coated ZnO | 7.1 | 0.85 | −72 | −42/−26/−18 (−20/20/80) | −53 | −53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, M. Threshold-Voltage Extraction Methods for Atomically Deposited Disordered ZnO Thin-Film Transistors. Materials 2023, 16, 2940. https://doi.org/10.3390/ma16082940
Yoon M. Threshold-Voltage Extraction Methods for Atomically Deposited Disordered ZnO Thin-Film Transistors. Materials. 2023; 16(8):2940. https://doi.org/10.3390/ma16082940
Chicago/Turabian StyleYoon, Minho. 2023. "Threshold-Voltage Extraction Methods for Atomically Deposited Disordered ZnO Thin-Film Transistors" Materials 16, no. 8: 2940. https://doi.org/10.3390/ma16082940
APA StyleYoon, M. (2023). Threshold-Voltage Extraction Methods for Atomically Deposited Disordered ZnO Thin-Film Transistors. Materials, 16(8), 2940. https://doi.org/10.3390/ma16082940