Effect of Different Scaling Methods on the Surface Topography of Different CAD/CAM Ceramic Compositions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sectioning of Samples
2.2. Surface Roughness Measurements (Ra)
2.3. Scaling Procedure
2.4. Scanning Electron Microscopy (SEM)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellakany, P.; Aly, N.M.; Al-Harbi, F. Accuracy of 3D Printed and Digital Casts Produced from Intraoral and Extraoral Scanners with Different Scanning Technologies: In Vitro Study. J. Prosthodont. 2022, 31, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Choi, Y.-S.; Kang, K.-H.; Att, W. Effects of Thermal and Mechanical Cycling on the Mechanical Strength and Surface Properties of Dental CAD-CAM Restorative Materials. J. Prosthet. Dent. 2022, 128, 79–88. [Google Scholar] [CrossRef]
- Zaniboni, J.F.; Silva, A.M.; Alencar, C.d.M.; Porto, T.S.; Jasinevicius, R.G.; Fortulan, C.A.; de Campos, E.A. Influence of Different Glaze Firing Protocols on the Mechanical Properties of CAD-CAM Ceramic Materials. J. Prosthet. Dent. 2022, 127, 925.e1–925.e8. [Google Scholar] [CrossRef]
- Vasiliu, R.D.; Ut, I.-D.; Rusu, L.; Bolos, A.; Porojan, L. Fractographic and Microhardness Evaluation of All-Ceramic Hot-Pressed and CAD/CAM Restorations after Hydrothermal Aging. Materials 2022, 15, 3987. [Google Scholar] [CrossRef]
- Saravi, B.; Vollmer, A.; Hartmann, M.; Lang, G.; Kohal, R.-J.; Boeker, M.; Patzelt, S.B.M. Clinical Performance of CAD/CAM All-Ceramic Tooth-Supported Fixed Dental Prostheses: A Systematic Review and Meta-Analysis. Materials 2021, 14, 2672. [Google Scholar] [CrossRef]
- Țălu, Ș.; Alb, S.F.; Pârvu, A.E.; Dudea, D.; Lainović, T.; Gasparik, C.; Alb, C. Factors Influencing the Choice of Dental Material and Procedure for Crown Restoration of Posterior Teeth—Design of a “Decision Guide”. Hum. Vet. Med. 2016, 8, 141–147. [Google Scholar]
- Al-Haj Husain, N.; Dürr, T.; Özcan, M.; Brägger, U.; Joda, T. Mechanical Stability of Dental CAD-CAM Restoration Materials Made of Monolithic Zirconia, Lithium Disilicate, and Lithium Disilicate–Strengthened Aluminosilicate Glass-Ceramic with and without Fatigue Conditions. J. Prosthet. Dent. 2022, 128, 73–78. [Google Scholar] [CrossRef]
- Jurado, C.A.; Mourad, F.; Trevino, D.A.C.; Gouveia, D.N.; Hyer, J.; Elgreatly, A.; Mahrous, A.M.; Garcia-Godoy, F.; Tsujimoto, A. Comparison of Full and Partial Coverage Crowns with CAD/CAM Leucite Reinforced Ceramic Blocks on Fracture Resistance and Fractographic Analysis. Dent. Mater. J. 2022, 41, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Ellakany, P.; Madi, M.; Aly, N.M.; Al-Aql, Z.S.; AlGhamdi, M.; AlJeraisy, A.; Alagl, A.S. Effect of CAD/CAM Ceramic Thickness on Shade Masking Ability of Discolored Teeth: In Vitro Study. Int. J. Environ. Res. Public Health 2021, 18, 13359. [Google Scholar] [CrossRef]
- Abdulkader, K.F.; Elnaggar, G.A.E.; Kheiralla, L.S. Shear Bond Strength of Cemented Zirconia-Reinforced Lithium Silicate Ceramics (Celtra Duo) with Two Surface Treatments (in Vitro Study). J. Adhes. Sci. Technol. 2021, 35, 35–51. [Google Scholar] [CrossRef]
- Makzoume, J.; Nasr, E.; Zebouni, E. All-Ceramic Computer-Aided Design and Computer-Aided Manufacturing Restorations: Evolution of Structures and Criteria for Clinical Application. J. Contemp. Dent. Pract. 2019, 20, 516–523. [Google Scholar] [CrossRef]
- Ritzberger, C.; Apel, E.; Höland, W.; Peschke, A.; Rheinberger, V.M. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies. Materials 2010, 3, 3700–3713. [Google Scholar] [CrossRef] [Green Version]
- Hamza, T.A.; Sherif, R.M. Fracture Resistance of Monolithic Glass-Ceramics Versus Bilayered Zirconia-Based Restorations. J. Prosthodont. 2019, 28, e259–e264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, N.; Us, Y.O. Mechanical and Optical Properties of Monolithic CAD-CAM Restorative Materials. J. Prosthet. Dent. 2018, 119, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Zarone, F.; Ruggiero, G.; Leone, R.; Breschi, L.; Leuci, S.; Sorrentino, R. Zirconia-Reinforced Lithium Silicate (ZLS) Mechanical and Biological Properties: A Literature Review. J. Dent. 2021, 109, 103661. [Google Scholar] [CrossRef]
- Rosentritt, M.; Schmid, A.; Huber, C.; Strasser, T. In Vitro Mastication Simulation and Wear Test of Virgilite and Advanced Lithium Disilicate Ceramics. Int. J. Prosthodont. 2022, 35, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Gunal, B.; Ulusoy, M.M. Optical Properties of Contemporary Monolithic CAD-CAM Restorative Materials at Different Thicknesses. J. Esthet. Restor. Dent. 2018, 30, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Demirel, M.; Diken Türksayar, A.A.; Donmez, M.B. Translucency, Color Stability, and Biaxial Flexural Strength of Advanced Lithium Disilicate Ceramic after Coffee Thermocycling. J. Esthet. Restor. Dent. 2023, 35, 390–396. [Google Scholar] [CrossRef]
- Marchesi, G.; Camurri Piloni, A.; Nicolin, V.; Turco, G.; Di Lenarda, R. Chairside CAD/CAM Materials: Current Trends of Clinical Uses. Biology 2021, 10, 1170. [Google Scholar] [CrossRef]
- Hölken, F.; Dietrich, H. Restoring Teeth with an Advanced Lithium Disilicate Ceramic: A Case Report and 1-Year Follow-Up. Case Rep. Dent. 2022, 2022, 872542. [Google Scholar] [CrossRef]
- Sousa, N.O.; Galvão, C.S.; Almeida, E.O.; Júnior, A.C.F. Factors That Influence the Clinical Longevity of Ceramic Unit Restoration: A Scoping Review. Eur. J. Dent. Oral Heal. 2022, 3, 24–29. [Google Scholar] [CrossRef]
- Kumar, A.; Grover, V.; Satpathy, A.; Jain, A.; Grover, H.S.; Khatri, M.; Kolte, A.; Dani, N.; Melath, A.; Chahal, G.S.; et al. ISP Good Clinical Practice Recommendations for Gum Care. J. Indian Soc. Periodontol. 2023, 27, 4–30. [Google Scholar] [CrossRef] [PubMed]
- Grande, F.; Mochi Zamperoli, E.; Pozzan, M.C.; Tesini, F.; Catapano, S. Qualitative Evaluation of the Effects of Professional Oral Hygiene Instruments on Prosthetic Ceramic Surfaces. Materials 2022, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Makkeyah, F.; Morsi, T.; Wahsh, M.; El-Etreby, A. An in Vitro Evaluation of Surface Roughness, Color Stability and Bacterial Accumulation of Lithium Disilicate Ceramic after Prophylactic Periodontal Treatment. Braz. Dent. Sci. 2021, 24, 1–8. [Google Scholar] [CrossRef]
- Checketts, M.R.; Turkyilmaz, I.; Asar, N.V. An Investigation of the Effect of Scaling-Induced Surface Roughness on Bacterial Adhesion in Common Fixed Dental Restorative Materials. J. Prosthet. Dent. 2014, 112, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, S.-H.; Han, J.-S.; Yeo, I.-S.L.; Yoon, H.-I.; Lee, J. Effects of Ultrasonic Scaling on the Optical Properties and Surface Characteristics of Highly Translucent CAD/CAM Ceramic Restorative Materials: An in Vitro Study. Ceram. Int. 2019, 45, 14594–14601. [Google Scholar] [CrossRef]
- Arabaci, T.; Çiçek, Y.; Çanakçi, C. Sonic and Ultrasonic Scalers in Periodontal Treatment: A Review. Int. J. Dent. Hyg. 2007, 5, 2–12. [Google Scholar] [CrossRef]
- Mota, E.G.; Smidt, L.N.; Fracasso, L.M.; Burnett, L.H., Jr.; Spohr, A.M. The Effect of Milling and Postmilling Procedures on the Surface Roughness of CAD/CAM Materials. J. Esthet. Restor. Dent. 2017, 29, 450–458. [Google Scholar] [CrossRef]
- Nakazawa, K.; Nakamura, K.; Harada, A.; Shirato, M.; Inagaki, R.; Örtengren, U.; Kanno, T.; Niwano, Y.; Egusa, H. Surface properties of dental zirconia ceramics affected by ultrasonic scaling and low-temperature degradation. PLoS ONE 2018, 13, e0203849. [Google Scholar] [CrossRef] [PubMed]
- Subaşı, M.G.; Çakmak, G.; Sert, M.; Yilmaz, B. Effect of Multiple Firings on Surface Roughness and Flexural Strength of CAD-CAM Ceramics. J. Prosthet. Dent. 2022, 128, 216.e1–216.e8. [Google Scholar] [CrossRef]
- Ellakany, P.; Madi, M.; Aly, N.M.; Alshehri, T.; Alameer, S.T.; Al-Harbi, F.A. Influences of Different CAD/CAM Ceramic Compositions and Thicknesses on the Mechanical Properties of Ceramic Restorations: An In Vitro Study. Materials 2023, 16, 646. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Corado, H.P.R.; da Silveira, P.H.P.M.; Ortega, V.L.; Ramos, G.G.; Elias, C.N. Flexural Strength of Vitreous Ceramics Based on Lithium Disilicate and Lithium Silicate Reinforced with Zirconia for CAD/CAM. Int. J. Biomater. 2022, 2022, e5896511. [Google Scholar] [CrossRef] [PubMed]
- Ellakany, P.; Fouda, S.M.; Mahrous, A.A.; AlGhamdi, M.A.; Aly, N.M. Influence of CAD/CAM Milling and 3D-Printing Fabrication Methods on the Mechanical Properties of 3-Unit Interim Fixed Dental Prosthesis after Thermo-Mechanical Aging Process. Polymers 2022, 14, 4103. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-B.; Jang, Y.J.; Koh, M.; Choi, B.-K.; Kim, K.-K.; Ko, Y. In Vitro Analysis of the Efficacy of Ultrasonic Scalers and a Toothbrush for Removing Bacteria from Resorbable Blast Material Titanium Disks. J. Periodontol. 2013, 84, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-B.; Lee, S.-H.; Kim, N.; Park, S.; Jin, S.-H.; Choi, B.-K.; Kim, K.-K.; Ko, Y. Instrumentation With Ultrasonic Scalers Facilitates Cleaning of the Sandblasted and Acid-Etched Titanium Implants. J. Oral Implantol. 2015, 41, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.; Macedo, P.; Tsurumaki, J.; Sampaio, J.; Marcantonio, R. The Effect of the Angle of Instrumentation of the Piezoelectric Ultrasonic Scaler on Root Surfaces. Int. J. Dent. Hyg. 2016, 14, 184–190. [Google Scholar] [CrossRef]
- Yoon, H.-I.; Noh, H.-M.; Park, E.-J. Surface Changes of Metal Alloys and High-Strength Ceramics after Ultrasonic Scaling and Intraoral Polishing. J. Adv. Prosthodont. 2017, 9, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Hossam, A.E.; Rafi, A.T.; Ahmed, A.S.; Sumanth, P.C. Surface topography of composite restorative materials following ultrasonic scaling and its Impact on bacterial plaque accumulation. An in-vitro SEM study. J. Int. Oral Heal. 2013, 5, 13–19. [Google Scholar]
- Bidra, A.S.; Daubert, D.M.; Garcia, L.T.; Kosinski, T.F.; Nenn, C.A.; Olsen, J.A.; Platt, J.A.; Wingrove, S.S.; Chandler, N.D.; Curtis, D.A. Clinical Practice Guidelines for Recall and Maintenance of Patients with Tooth-Borne and Implant-Borne Dental Restorations. J. Am. Dent. Assoc. 2016, 147, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigolo, P.; Buzzo, O.; Buzzo, M.; Mutinelli, S. An In Vitro Evaluation of Alumina, Zirconia, and Lithium Disilicate Surface Roughness Caused by Two Scaling Instruments. J. Prosthodont. 2017, 26, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Seol, H.W.; Heo, S.J.; Koak, J.Y.; Kim, S.K.; Baek, S.H.; Lee, S.Y. Surface Alterations of Several Dental Materials by a Novel Ultrasonic Scaler Tip. Int. J. Oral Maxillofac. Implants. 2012, 27, 801–810. [Google Scholar] [PubMed]
- Al Ankily, M.; Makkeyah, F.; Bakr, M.; Shamel, M. Effect of Different Scaling Methods and Materials on the Enamel Surface Topography: An In Vitro SEM Study. J. Int. Oral Heal. 2020, 12, 579–585. [Google Scholar] [CrossRef]
- Mittal, A.; Nichani, A.S.; Venugopal, R.; Rajani, V. The Effect of Various Ultrasonic and Hand Instruments on the Root Surfaces of Human Single Rooted Teeth: A Planimetric and Profilometric Study. J. Indian Soc. Periodontol. 2014, 18, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.G.; McCabe, J.F.; Barnes, I.E. Properties of a Titanium Nitride Coating for Dental Instruments. J. Dent. 1991, 19, 226–229. [Google Scholar] [CrossRef]
- Sasahara, R.M.C.; Ribeiro, F.C.; Cesar, P.F.; Yoshimura, H.N. Influence of the Finishing Technique on Surface Roughness of Dental Porcelains with Different Microstructures. Oper. Dent. 2006, 31, 577–583. [Google Scholar] [CrossRef]
- Turker, I.; Kursoglu, P. Wear Evaluation of CAD-CAM Dental Ceramic Materials by Chewing Simulation. J. Adv. Prosthodont. 2021, 13, 281–291. [Google Scholar] [CrossRef]
Adjusted Mean (SE) | 95% CI | p-Value | ||
---|---|---|---|---|
Ceramic Material | CD | 0.55 (0.003) a | 0.54, 0.56 | <0.001 * |
CT | 0.41 (0.003) b | 0.41, 0.42 | ||
IPE | 0.48 (0.003) c | 0.48, 0.49 | ||
IPS | 0.49 (0.003) c | 0.48, 0.49 | ||
Scaling Method | Control (no scaling) | 0.41 (0.003) a | 0.41, 0.42 | <0.001 * |
Ultrasonic scaling | 0.53 (0.003) b | 0.53, 0.54 | ||
Manual metal scaling | 0.52 (0.003) c | 0.51, 0.52 | ||
Manual plastic scaling | 0.47 (0.003) d | 0.47, 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellakany, P.; Aly, N.M.; Alghamdi, M.M.; Alameer, S.T.; Alshehri, T.; Akhtar, S.; Madi, M. Effect of Different Scaling Methods on the Surface Topography of Different CAD/CAM Ceramic Compositions. Materials 2023, 16, 2974. https://doi.org/10.3390/ma16082974
Ellakany P, Aly NM, Alghamdi MM, Alameer ST, Alshehri T, Akhtar S, Madi M. Effect of Different Scaling Methods on the Surface Topography of Different CAD/CAM Ceramic Compositions. Materials. 2023; 16(8):2974. https://doi.org/10.3390/ma16082974
Chicago/Turabian StyleEllakany, Passent, Nourhan M. Aly, Maram M. Alghamdi, Shahad T. Alameer, Turki Alshehri, Sultan Akhtar, and Marwa Madi. 2023. "Effect of Different Scaling Methods on the Surface Topography of Different CAD/CAM Ceramic Compositions" Materials 16, no. 8: 2974. https://doi.org/10.3390/ma16082974
APA StyleEllakany, P., Aly, N. M., Alghamdi, M. M., Alameer, S. T., Alshehri, T., Akhtar, S., & Madi, M. (2023). Effect of Different Scaling Methods on the Surface Topography of Different CAD/CAM Ceramic Compositions. Materials, 16(8), 2974. https://doi.org/10.3390/ma16082974