Effect of I-Phase on Microstructure and Corrosion Resistance of Mg-8.5Li-6.5Zn-1.2Y Alloy
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Material Preparation
2.2. Heat Treatments
2.3. Characterization
2.3.1. Microstructures and Phase Compositions
2.3.2. Corrosion Assessed
3. Results and Discussion
3.1. Phase Compositions and Microstructures of Mg-8.5Li-6.5Zn-1.2Y Alloy
3.2. Corrosion Properties of Mg-8.5Li-6.5Zn-1.2Y Alloys
3.2.1. Hydrogen Evolution and Mass Loss
3.2.2. Electrochemical Measurement
3.3. Corrosion Mechanisms
4. Conclusions
- Generally, with the process of solid solution treatment, the amount of I-phase gradually decreases with the extension of the solid solution treatment time. Exceptionally, when the solution time is 4 h, the number of I-phases increases, and they are evenly distributed in the matrix. The amount of α-Mg phase decreases with the extension of solution time. When the solid solution treatment time reaches 6 h, the α-Mg phase is densely distributed in the matrix in the shape of a needle.
- After solid solution treatment for 4 h, the precipitated I-phase can effectively hinder the expansion of filiform corrosion and the growth of pitting corrosion. Therefore, the material shows excellent corrosion resistance.
- After solid solution treatment for 6 h, an abundance of phase boundaries are formed between the special acicular α-Mg phase and the β-Li phase, which become obstacles to corrosion and improve the corrosion resistance of the material.
- The I-phase and α-Mg phase are the primary elements impacting the corrosion resistance of the Mg-8.5Li-6.5Zn-1.2Y alloy. On the one hand, the existence of the I-phase and the border dividing the α-Mg phase and β-Li phase can easily form galvanic corrosion, which has a bad effect on the corrosion resistance of the alloy. On the other hand, the I-phase and the border dividing the α-Mg phase and β-Li phase can hinder the corrosion of the alloy and improve the corrosion resistance of the alloy.
Author Contributions
Funding
Conflicts of Interest
References
- Wei, Z.; Zheng, H.P.; Wu, R.Z.; Zhang, J.H.; Wu, H.J.; Jin, S.Y.; Jiao, Y.L.; Hou, L.G. Interface behavior and tensile properties of Mg-14Li-3Al-2Gd sheets prepared by four-layer accumulative roll bonding. J. Manuf. Process. 2021, 61, 254–260. [Google Scholar] [CrossRef]
- Jin, S.Y.; Liu, H.Y.; Wu, R.Z.; Zhong, F.; Hou, L.G.; Zhang, J.H. Combination effects of Yb addition and cryogenic-rolling on microstructure and mechanical properties of LA141 alloy. Mater. Sci. Eng. A 2020, 788, 139611. [Google Scholar] [CrossRef]
- Wang, J.H.; Xu, L.; Wu, R.Z.; Feng, J.; Zhang, J.H.; Hou, L.G.; Zhang, M.L. Enhanced electromagnetic interference shielding in a duplex-phase Mg–9Li–3Al–1Zn alloy processed by accumulative roll bonding. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 490–499. [Google Scholar] [CrossRef]
- Zhang, J.H.; Liu, S.J.; Wu, R.Z.; Hou, L.G.; Zhang, M.L. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloys 2018, 6, 277–291. [Google Scholar] [CrossRef]
- Zhong, F.; Wu, H.J.; Jiao, Y.L.; Wu, R.Z.; Zhang, J.H.; Hou, L.G.; Zhang, M.L. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy. J. Mater. Sci. Technol. 2020, 39, 124–134. [Google Scholar] [CrossRef]
- Qian, B.Y.; Wu, R.Z.; Sun, J.F.; Zhang, J.H.; Hou, L.G.; Ma, X.C.; Wang, J.H.; Hu, H.T. Evolutions of Microstructure and Mechanical Properties in Mg–5Li–1Zn–0.5 Ag–0.5 Zr–x Gd Alloy. Acta Metall. Sin. (Engl. Lett.) 2023, 36, 215–228. [Google Scholar] [CrossRef]
- Yang, X.H.; Jin, Y.; Wu, R.Z.; Wang, J.H.; Wang, D.; Ma, X.C.; Hou, L.G.; Serebryany, V.; Tashlykova-Bushkevich, I.I.; Betsofen, S.Y. Simultaneous Improvement of Strength, Ductility and Damping Capacity of Single β-Phase Mg–Li–Al–Zn Alloys. Metals 2023, 13, 159. [Google Scholar] [CrossRef]
- Zhong, F.; Zhang, S.; Wu, R.Z.; Wu, H.J.; Ma, X.C.; Hou, L.G.; Zhang, J.H. Effects of rolling reductions on microstructure evolution and mechanical properties of Mg-8Li-1Al-0.6 Y-0.6 Ce alloy. Adv. Eng. Mater. 2023, 2201716. [Google Scholar] [CrossRef]
- Jin, S.Y.; Ma, X.C.; Wu, R.Z.; Li, T.Q.; Wang, J.X.; Krit, B.L.; Hou, L.G.; Zhang, J.H.; Wang, G.X. Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg-9Li-3Al alloy. Int. J. Miner. Metall. Mater. 2022, 29, 1453–1463. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.J.; Wu, R.Z.; Zhang, S.; Wang, Y.; Wu, H.J.; Zhang, J.H.; Hou, L.G. Synergistically improved damping, elastic modulus and mechanical properties of rolled Mg-8Li-4Y–2Er-2Zn-0.6 Zr alloy with twins and long-period stacking ordered phase. J. Alloys Compd 2021, 881, 160663. [Google Scholar] [CrossRef]
- Wang, B.J.; Xu, D.K.; Cai, X.; Qiao, Y.X.; Sheng, L.Y. Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg-8 wt.% Li alloy. J. Magnesium Alloys 2021, 9, 560–568. [Google Scholar] [CrossRef]
- Wang, B.J.; Jiang, C.L.; Li, C.Q.; Sun, J.; Xu, D.K. Research progress on corrosion behavior of magnesium-lithium alloys. J. Aeronaut. Mater. 2019, 39, 1–8. [Google Scholar]
- Song, Y.W.; Shan, D.Y.; Chen, R.S.; Zhang, F.; Han, E.H. Formation mechanism of phosphate conversion film on Mg–8.8 Li alloy. Corros. Sci. 2009, 51, 62–69. [Google Scholar] [CrossRef]
- Gu, M.Y.; Wei, G.L.; Liu, W.C.; Wu, G.H. Influence of neodymium on microstructure and corrosion behavior of Mg-8Li-3Al-2Zn alloy. Mater. Corros. 2017, 68, 436–443. [Google Scholar] [CrossRef]
- Gu, M.Y.; Wei, G.L.; Zhao, J.; Liu, W.C.; Wu, G.H. Influence of yttrium addition on the corrosion behaviour of as-cast Mg–8Li–3Al–2Zn alloy. Mater. Sci. Technol. 2017, 33, 864–869. [Google Scholar] [CrossRef]
- Li, C.Q.; Liu, X.; Dong, L.J.; Shi, B.Q.; Tang, S.; Dong, Y.; Zhang, Z.R. Simultaneously improved mechanical strength and corrosion resistance of Mg-Li-Al alloy by solid solution treatment. Mater. Lett. 2021, 301, 130305. [Google Scholar] [CrossRef]
- Cao, F.Y.; Zhang, J.; Li, K.K.; Song, G.L. Influence of heat treatment on corrosion behavior of hot rolled Mg5Gd alloys. Trans. Nonferrous Met. Soc. China 2021, 31, 939–951. [Google Scholar] [CrossRef]
- Dobkowska, A.; Adamczyk Cieślak, B.; Kubásek, J.; Vojtěch, D.; Kuc, D.; Hadasik, E.; Mizera, J. Microstructure and corrosion resistance of a duplex structured Mg–7.5 Li–3Al–1Zn. J. Magnes. Alloys 2021, 9, 467–477. [Google Scholar] [CrossRef]
- Wen, X.; Cui, X.F.; Jin, G.; Jiao, Y.L.; Fang, Y.C. A novel Ni2MnCuSnAl0.1 multi-principal element alloy coating to enhance the wear resistance and corrosion resistance of Mg-Li alloy. Opt. Laser Technol. 2021, 142, 107243. [Google Scholar] [CrossRef]
- Yan, Y.; Gang, Z.; Ren, F.J.; Deng, H.J.; Wei, G.B.; Peng, X.D. Effect of rolling reduction and annealing process on microstructure and corrosion behavior of LZ91 alloy sheet. Trans. Nonferrous Met. Soc. China 2020, 30, 1816–1825. [Google Scholar]
- Sun, Y.H.; Wang, R.C.; Peng, C.Q.; Yan, F.; Ming, Y. Corrosion behavior and surface treatment of superlight Mg–Li alloys. Trans. Nonferrous Met. Soc. China 2017, 27, 1455–1475. [Google Scholar] [CrossRef]
- Qian, B.Y.; Miao, W.; Qiu, M.; Gao, F.; Hu, D.H.; Sun, J.F.; Wu, R.Z.; Krit, B.; Betsofen, S. Influence of voltage on the corrosion and wear resistance of micro-arc oxidation coating on Mg–8Li–2Ca alloy. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Gusieva, K.; Davies, C.; Scully, J.R.; Birbilis, N. Corrosion of magnesium alloys: The role of alloying. Int. Mater. Rev. 2015, 60, 169–194. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, D.H.; Lim, H.K.; Kim, D.H. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys. Mater. Lett. 2005, 59, 3801–3805. [Google Scholar] [CrossRef]
- Xu, D.K.; Han, E.H. Effects of icosahedral phase formation on the microstructure and mechanical improvement of Mg alloys: A review. Prog. Nat. Sci. Mater. Int. 2012, 22, 364–385. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.K.; Han, E.H. Effect of quasicrystalline phase on improving the corrosion resistance of a duplex structured Mg–Li alloy. Scripta Mater. 2014, 71, 21–24. [Google Scholar] [CrossRef]
- Song, Y.W.; Han, E.H.; Shan, D.Y.; Yim, C.D.; You, B.S. The role of second phases in the corrosion behavior of Mg–5Zn alloy. Corros. Sci. 2012, 60, 238–245. [Google Scholar] [CrossRef]
- Song, Y.W.; Shan, D.Y.; Chen, R.S.; Han, E.H. Effect of second phases on the corrosion behaviour of wrought Mg–Zn–Y–Zr alloy. Corros. Sci. 2010, 52, 1830–1837. [Google Scholar] [CrossRef]
- Xu, D.K.; Zu, T.T.; Yin, M.; Xu, Y.B.; Han, E.H. Mechanical properties of the icosahedral phase reinforced duplex Mg–Li alloy both at room and elevated temperatures. J. Alloys Compd. 2014, 582, 161–166. [Google Scholar] [CrossRef]
- Xu, D.K.; Li, C.Q.; Wang, B.J.; Han, E.H. Effect of icosahedral phase on the crystallographic texture and mechanical anisotropy of duplex structured Mg–Li alloys. Mater. Design 2015, 88, 88–97. [Google Scholar] [CrossRef]
- Rettberg, L.H.; Jordon, J.B.; Horstemeyer, M.F.; Jones, J.W. Low-cycle fatigue behavior of die-cast Mg alloys AZ91 and AM60. Metall. Mater. Trans. A 2012, 43, 2260–2274. [Google Scholar] [CrossRef]
- Jana, A.; Das, M.; Balla, V.K. Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy. J. Alloys Compd 2020, 821, 153462. [Google Scholar] [CrossRef]
- Li, H.Z.; Lv, F.; Xiao, Z.Y.; Liang, X.P.; Sang, F.J.; Li, P.W. Low-cycle fatigue behavior of a cast Mg–Y–Nd–Zr alloy by T6 heat treatment. Mater. Sci. Eng. A 2016, 676, 377–384. [Google Scholar] [CrossRef]
- Wang, S.D.; Xu, D.K.; Chen, X.B.; Han, E.H.; Dong, C. Effect of heat treatment on the corrosion resistance and mechanical properties of an as-forged Mg–Zn–Y–Zr alloy. Corros. Sci. 2015, 92, 228–236. [Google Scholar] [CrossRef]
- Chen, B.; Lin, D.L.; Zeng, X.Q.; Lu, C. Effect of solid solution treatment on microstructure and mechanical properties of Mg97Y2Zn1 alloy. J. Mater. Eng. Perform. 2013, 22, 523–527. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.; Mao, L.P. Effect of high temperature heat treatment on quasicrystal phase in Mg82Zn14.2Y3.3Zr0.5 alloy. Heat Treat. Met. 2014, 39, 54–58. [Google Scholar]
- Kokalj, A.; Lozinšek, M.; Kapun, B.; Taheri, P.; Neupane, S.; Losada-Pérez, P.; Xie, C.; Stavber, S.; Crespo, D.; Renner, F.U. Simplistic correlations between molecular electronic properties and inhibition efficiencies: Do they really exist? Corros. Sci. 2021, 179, 108856. [Google Scholar] [CrossRef]
- Dong, L.J.; Liu, X.; Liang, J.X.; Li, C.Q.; Dong, Y.; Zhang, Z.R. Corrosion behavior of a eutectic Mg–8Li alloy in NaCl solution. Electrochem. Commun. 2021, 129, 107087. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, L.Y.; Ma, Y.L.; Liu, L.; Zhang, Z.; Yang, M.B.; Zhang, D.F.; Pan, F.S. Strengthening a dual-phase Mg–Li alloy by strain-induced phase transformation at room temperature. Scripta Mater. 2020, 179, 16–19. [Google Scholar] [CrossRef]
- Atrens, A.D.; Gentle, I.; Atrens, A. Possible dissolution pathways participating in the Mg corrosion reaction. Corros. Sci. 2015, 92, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.C.; Liu, M.; Song, G.L.; Atrens, A. Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corros. Sci. 2008, 50, 3168–3178. [Google Scholar] [CrossRef]
- Song, Y.W.; Shan, D.Y.; Chen, R.S.; Han, E.H. Corrosion characterization of Mg–8Li alloy in NaCl solution. Corros. Sci. 2009, 51, 1087–1094. [Google Scholar] [CrossRef]
- Li, C.Q.; Xu, D.K.; Chen, X.B.; Wang, B.J.; Wu, R.Z.; Han, E.H.; Birbilis, N. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys. Electrochim. Acta 2018, 260, 55–64. [Google Scholar] [CrossRef]
Alloys | Ecorr (VSCE) | icorr (A/cm2) | βc (mV·dec−1) |
---|---|---|---|
As-cast | −1.268 | 3.40 × 10−5 | −214.1 |
2 h | −1.278 | 3.08 × 10−5 | −218.4 |
4 h | −1.308 | 1.98 × 10−5 | −224.5 |
6 h | −1.315 | 2.26 × 10−5 | −201.2 |
Alloys | Rs (Ω·cm2) | Ydl (Ω·cm−2 Sn) | ndl | Rct (Ω·cm2) | Rf (Ω·cm2) | L (H·cm−2) | RL (Ω·cm2) |
---|---|---|---|---|---|---|---|
As-cast | 21.51 | 3.31 × 10−5 | 0.87 | 451.1 | 1.77 × 102 | 7.05 × 104 | 563.21 |
2 h | 21.37 | 2.52 × 10−5 | 0.90 | 499.6 | 1.84 × 102 | 7.21 × 104 | 702.37 |
4 h | 21.20 | 3.02 × 10−5 | 0.87 | 646 | 2.21 × 102 | 1.01 × 105 | 884.52 |
6 h | 22.45 | 2.80 × 10−5 | 0.87 | 577.8 | 2.02 × 102 | 9.83 × 104 | 814.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; He, L.; Wang, J.; Ma, X.; Wang, G.; Wu, R.; Jin, S.; Wang, J.; Lu, Z.; Yang, Z.; et al. Effect of I-Phase on Microstructure and Corrosion Resistance of Mg-8.5Li-6.5Zn-1.2Y Alloy. Materials 2023, 16, 3007. https://doi.org/10.3390/ma16083007
Fang Z, He L, Wang J, Ma X, Wang G, Wu R, Jin S, Wang J, Lu Z, Yang Z, et al. Effect of I-Phase on Microstructure and Corrosion Resistance of Mg-8.5Li-6.5Zn-1.2Y Alloy. Materials. 2023; 16(8):3007. https://doi.org/10.3390/ma16083007
Chicago/Turabian StyleFang, Ziming, Liangxu He, Jiaxiu Wang, Xiaochun Ma, Guixiang Wang, Ruizhi Wu, Siyuan Jin, Jiahao Wang, Zihui Lu, Zhenzhao Yang, and et al. 2023. "Effect of I-Phase on Microstructure and Corrosion Resistance of Mg-8.5Li-6.5Zn-1.2Y Alloy" Materials 16, no. 8: 3007. https://doi.org/10.3390/ma16083007
APA StyleFang, Z., He, L., Wang, J., Ma, X., Wang, G., Wu, R., Jin, S., Wang, J., Lu, Z., Yang, Z., Krit, B., Betsofen, S., & Tashlykova-Bushkevich, I. I. (2023). Effect of I-Phase on Microstructure and Corrosion Resistance of Mg-8.5Li-6.5Zn-1.2Y Alloy. Materials, 16(8), 3007. https://doi.org/10.3390/ma16083007