Novel Antibacterial Metals as Food Contact Materials: A Review
Abstract
:1. Introduction
2. Nano-Antibacterial Materials for Food Contact
3. Antibacterial Coating for Food Contact
4. Antibacterial Alloys for Food Contact
- Long-term antibacterial ability
- 2.
- Easy control and preparation
4.1. Liquid Food Preservation
4.2. Solid Food Preservation
4.3. Actual Industrial Applications
5. Chemical Migration of Food Contact Materials
6. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Julie, N.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active packaging applications for food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Dobrucka, R.; Cierpiszewski, R. Active and intelligent packaging food—Research and development—A review. Pol. J. Food Nutr. Sci. 2014, 64, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Restuccia, D.; Spizzirri, U.G.; Parisi, O.I.; Cirillo, G.; Curcio, M.; Iemma, F.; Puoci, F.; Vinci, G.; Picci, N. New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 2010, 21, 1425–1435. [Google Scholar] [CrossRef]
- Wang, X.H.; Huang, Q.C.; Ge, C.R. Shallowly analysis on the exiting safety problems and control measures in food packaging containers and materials. Food Sci. Tech. 2006, 31, 14–17. [Google Scholar]
- Kourmentza, K.; Gromada, X.; Michael, N.; Degraeve, C.; Vanier, G.; Ravallec, R.; Coutte, F.; Karatzas, K.A.; Jauregi, P. Antimicrobial activity of lipopeptide biosurfactants against foodborne pathogen and food spoilage microorganisms and their cytotoxicity. Front. Microbiol. 2021, 11, 3398. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.; Kim, J.H.; Oh, S.W. Review of multi-species biofilm formation from foodborne pathogens: Multi-species biofilms and removal methodology. Crit. Rev. Food Sci. 2021, 3, 5783–5793. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, S.; Wu, S.; Chen, G.; Liu, F.; Zhang, C.; Dong, Q.; Liu, Q. A review of factor affecting biofilm formation by food-borne pathogenic bacteria. Food Sci. 2015, 36, 239–243. [Google Scholar]
- Vasile, C.; Baican, M. Progresses in food packaging, food quality, and safety-controlled-release antioxidant and/or antimicrobial packaging. Molecules 2021, 26, 1263. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, W.; Zhu, W.; McClements, D.J.; Liu, X.; Liu, F. A review of multilayer and composite films and coatings for active biodegradable packaging. NPJ Sci. Food. 2022, 6, 18. [Google Scholar] [CrossRef]
- Tkaczewska, J.; Jamróz, E.; Zając, M.; Guzik, P.; Gedif, H.D.; Turek, K.; Kopeć, M. Antioxidant edible double-layered film based on waste from soybean production as a vegan active packaging for perishable food products. Food Chem. 2022, 400, 134009. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends. Food Sci. Tech. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Jideani, V.A.; Vogt, K. Antimicrobial packaging for extending the shelf life of bread—A review. Crit. Rev. Food. Sci. 2016, 56, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Rokalla, P.; Inbaraj, B.S.; Dikkala, P.K.; Sridhar, K.; Dasi, D.S.; Koka, L.; Munakala, R.; Galipothula, R.; Chelli, K.S.R.; Kalletlapally, N.K. Active-modified atmosphere packaging of ready-to-eat pomegranate (Punica granatum L.) arils at ambient temperature for extending shelf-life. Agriculture 2022, 12, 155. [Google Scholar] [CrossRef]
- Mesgari, M.; Aalami, A.H.; Sahebkar, A. Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: A review. Int. J. Biol. Macromol. 2021, 176, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.R.; Wei, Q.K.; Chen, Y.J. Pseudomonas spp. and Hafnia alvei growth in UHT milk at cold storage. Food Control 2011, 22, 697–701. [Google Scholar] [CrossRef]
- Federle, M.J.; Bassler, B.L. Interspecies communication in bacteria. J. Clin. Investig. 2003, 112, 1291–1299. [Google Scholar] [CrossRef]
- Drenkard, E.; Ausubel, F.M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 2002, 416, 740–743. [Google Scholar] [CrossRef]
- Navaneethan, Y. Prevalence, toxigenic profiles, multidrug resistance, and biofilm formation of Bacillus cereus isolated from ready-to eat cooked rice in Penang, Malaysia. Food Control 2021, 1, 121–131. [Google Scholar] [CrossRef]
- Lacorte, G.A.; Cruvinel, L.A.; de Paula Ávila, M.; Dias, M.F.; de Abreu Pereira, A.; Nascimento, A.M.A.; de Melo Franco, B.D.G. Investigating the influence of Food Safety Management Systems (FSMS) on microbial diversity of Canastra cheeses and their processing environments. Food Microbiol. 2022, 105, 104023. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Wang, S.; Xiao, K.; Huang, X. Enzymatic cleaning mitigates polysaccharide-induced refouling of RO membrane: Evidence from foulant layer structure and microbial dynamics. Environ. Sci. Technol. 2021, 55, 5453–5462. [Google Scholar] [CrossRef]
- Gibson, H.; Taylor, J.H.; Hall, K.E.; Holah, J.T. Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. J. Appl. Microbiol. 1999, 87, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Wolko, L.; Majcher, M.; Grygier, A.; Myszka, K.; Nuc, K.; Tomas, N. In situ approaches show the limitation of the spoilage potential of Juniperus phoenicea L. essential oil against cold-tolerant Pseudomonas fluorescens KM24. Appl. Microbiol. Biot. 2021, 105, 4255–4268. [Google Scholar]
- Pilevar, Z.; Hosseini, H.; Abdollahzadeh, E.; Shojaee-Aliabadi, S.; Khosroshahi, N.K. Effect of zataria multiflora boiss. essential oil, time, and temperature on the expression of listeria monocytogenes virulence genes in broth and minced rainbow trout. Food Control 2019, 109, 106863. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Si, Y.; Huang, K.; Nitin, N.; Sun, G. Rechargeable antibacterial n-halamine films with antifouling function for food packaging applications. ACS Appl. Mater. Interfaces 2019, 11, 17814–17822. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, Y.; Zhu, D.; Jin, Y.; Jin, H.; Sheng, L. Preparation and characterization of edible carboxymethyl cellulose films containing natural antibacterial agents: Lysozyme. Food Chem. 2022, 385, 132708. [Google Scholar] [CrossRef]
- Mandana, T.; Mira, O.; Van, D.; Nathalie, T. Developing antibacterial nanocrystalline cellulose using natural antibacterial agents. ACS Appl. Mater. Interfaces 2018, 10, 33827–33838. [Google Scholar]
- Khaneghah, A.M.; Hashemi, S.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial food active packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 11, 1–19. [Google Scholar] [CrossRef]
- Song, Q.; Xiao, Y.; Xiao, Z. Lysozymes in fish. J. Agric. Food Chem. 2021, 69, 15039–15051. [Google Scholar] [CrossRef]
- Wang, H.; Song, X.; Li, Z.; Zhang, D. Research progress of antimicrobial packaging materials in food packaging. J. Heilongjiang Bayi Agric. Univ. 2018, 30, 69–74. [Google Scholar]
- Li, X.; Xing, R.; Xu, C.; Liu, S.; Li, P. Immunostimulatory effect of chitosan and quaternary chitosan: A review of potential vaccine adjuvants. Carbohyd. Polym. 2021, 264, 118050. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.W. Chitosan-based biodegradable functional films for food packaging applications. Innov. Food Sci. Emerg. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Kowsalya, E.; Mosachristas, K.; Balashanmugam, P.; Tamil, S.A.; Jaquline, C. Biocompatible silver nanoparticles/poly (vinyl alcohol) electrospun nanofibers for potential antimicrobial food packaging applications. Food Packag. Shelf 2019, 21, 100379. [Google Scholar]
- Sya, B.; Maj, A.; Naama, C.; Ah, A. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater. Sci. Eng. 2021, 118, 111382. [Google Scholar]
- Dobrucka, R.; Ankiel, M. Possible applications of metal nanoparticles in antimicrobial food packaging. J. Food Saf. 2019, 39, 12619. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Deng, L.; Zou, L.; Feng, F.; Zhang, H. Hydrophobic ethylcellulose/gelatin nanofibers containing Zinc oxide nanoparticles for antimicrobial packaging. J. Agric. Food Chem. 2018, 6, 9498–9506. [Google Scholar] [CrossRef] [PubMed]
- Adniak, A.; Jurak, M.; Wicek, A.E. Effect of chitosan, hyaluronic acid and/or titanium dioxide on the physicochemical characteristic of phospholipid film/glass surface. Physicochem. Probl. Miner. Process. 2019, 55, 1535–1548. [Google Scholar]
- Almasi, H.; Jafarzadeh, P.; Mehryar, L. Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties. Carbohyd. Polym. 2018, 186, 273–281. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, J.; Liu, X.; Hu, Q.; Huang, J. Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J. Mater. Chem. 2013, 1, 3477–3485. [Google Scholar] [CrossRef]
- Bikiaris, D.N.; Triantafyllidis, K.S. HDPE/Cu-nanofiber nanocomposites with enhanced antibacterial and oxygen barrier properties appropriate for food packaging applications. Mater. Lett. 2013, 93, 1–4. [Google Scholar] [CrossRef]
- Omerovi, N.; Djisalov, M.; Ivojevi, K.; Mladenovi, M.; Vunduk, J.; Milenkovi, I.; Knežević, N.Z.; Gadjanski, I.; Vidić, J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2428–2454. [Google Scholar] [CrossRef]
- Yun’An, Q.; Lin, C.; Ruiyan, L.; Guancong, L.; Yanbo, Z.; Xiong, T. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018, 13, 3311–3327. [Google Scholar]
- Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univ. Sci. 2016, 28, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Li, L.; Ding, L.; Gong, Q.; Cheng, J.; Fu, S.L.; Wang, L.B. Migration of Ag nanoparticles in food contact material. J. Food Saf. Qual. 2016, 7, 113–118. [Google Scholar]
- Jokar, M.; Abudl, R. Study of silver ion migration from melt-blended and layered-deposited silver polyethylene nanocomposite into food simulants and apple juice. Food Addit. Contam. 2014, 31, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hortal, M.; Jordá-Beneyto, M.; Rosa, E.; Lara-Lledo, M.; Lorente, I. ZnO-pla nanocomposite coated paper for antimicrobial packaging application. LWT—Food Sci Tech. 2017, 78, 250–257. [Google Scholar] [CrossRef]
- Rojas, K.; Canales, D.; Amigo, N.; Montoille, L.; Cament, A.; Rivas, L.M. Effective antimicrobial materials based on low-density polyethylene (ldpe) with zinc oxide (ZnO) nanoparticles. Compos. Eng. 2017, 172, 173–178. [Google Scholar] [CrossRef]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R.R. Antimicrobial packaging efficiency of ZnO-SiO2 nanocomposites infused into PVA/CS film for enhancing the shelf life of food products. Food Packag. Shelf 2020, 25, 100523. [Google Scholar] [CrossRef]
- Carré, G.; Hamon, E.; Ennahar, S.; Estner, M.; Lett, M.C.; Horvatovich, P.; Gies, J.P.; Keller, V.; Keller, N.; Andre, P. TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Appl. Environ. Microb. 2014, 80, 2573–2581. [Google Scholar] [CrossRef] [Green Version]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.P.; Fan, A.P.; Meng, J.M.; Wu, Y.S.; Yan, W. Preparation of nano-TiO2 antimicrobial composite film and its application on preservation of loquat fruit. Food Sci. Tech. 2020, 45, 56–61. [Google Scholar]
- Hund, R.K.; Simon, M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ. Sci. Pollut. 2006, 13, 25. [Google Scholar]
- Bai, C.L. Nano—Technology and its prospects. Chin. Sci. Bull. 2001, 46, 89–92. [Google Scholar]
- Zhao, L.; Wang, H.; Huo, K.; Cui, L.; Zhang, W.; Ni, H.; Zhang, Y.; Wu, Z.; Chu, P.K. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 2011, 32, 5706–5716. [Google Scholar] [CrossRef] [PubMed]
- Gross, T.M.; Lahiri, J.; Golas, A.; Luo, J.; Verrier, F.; Kurzejewski, J.L.; Baker, D.E.; Wang, J.; Novak, P.F.; Snyder, M.J. Copper-containing glass ceramic with high antimicrobial efficacy. Nat. Commun. 2019, 10, 1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, E.; Zhao, X.; Hu, J.; Wang, R.; Fu, S.; Qin, G. Antibacterial metals and alloys for potential biomedical implants. Bioact. Mater. 2021, 6, 44. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Y.; Zhang, N.; Xue, K.; Yang, M. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial Vstainless steel. Colloid. Surface 2013, 105, 51–57. [Google Scholar] [CrossRef]
- Shirai, T.; Tsuchiya, H.; Shimizu, T.; Ohtani, K.; Zen, Y.; Tomita, K. Prevention of pin tract infection with titanium-copper alloys. J. Biomed. Mater. Res. Appl. Biomater. 2009, 91, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.L.; Li, F.B.; Wang, H.Y.; Liu, J.; Wang, C.M.; Li, M.Q. A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property. Mater. Sci. Eng. 2013, 33, 4280–4287. [Google Scholar] [CrossRef]
- Feng, Y.S.; Zhu, S.J.; Wang, L.G.; Chang, L.; Hou, Y.C.; Guan, S.K. Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy: Microstructure, mechanical properties, corrosion behavior and antibacterial activities. Bioact. Mater. 2018, 3, 225–235. [Google Scholar] [CrossRef]
- Zhang, E.L.; Liu, C. A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property. Mater. Sci. Eng. 2016, 69, 134–143. [Google Scholar] [CrossRef]
- Lu, Y.J.; Ren, L.; Wu, S.Q.; Yang, C.G.; Lin, W.L.; Xiao, S.L.; Yang, Y.; Yang, K.; Lin, J.X. CoCrWCu alloy with antibacterial activity fabricated by selective laser melting: Densification, mechanical properties and microstructural analysis. Powder Technol. 2018, 325, 289–300. [Google Scholar] [CrossRef]
- Zhuang, Y.F.; Zhang, S.Y.; Yang, K.; Ren, L.; Dai, K.R. Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection. J. Biomed. Mater. Res. Appl. Biomater. 2020, 108, 484–495. [Google Scholar] [CrossRef]
- Xi, T.; Shahzad, M.B.; Xu, D.K.; Sun, Z.Q.; Zhao, J.L.; Yang, C.G.; Qi, M.; Yang, K. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel. Mater. Sci. Eng. 2017, 71, 1079–1085. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.G.; Xu, D.K.; Shen, M.G.; Nan, L.; Yang, K. Effect of heat treatment on antibacterial performance of 3Cr13MoCu martensitic stainless steel. Acta Metall. Sin. 2014, 50, 1453–1460. [Google Scholar]
- Yang, S.M.; Chen, Y.C.; Pan, Y.T.; Lin, D.Y. Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel. Mater. Sci. Eng. 2016, 63, 376–383. [Google Scholar] [CrossRef]
- Nunes, M.M.; Mota, A.; Caldas, E.D. Investigation of food and water microbiological conditions and foodborne disease outbreaks in the Federal District. Brazil. Food Control 2013, 34, 235–240. [Google Scholar] [CrossRef]
- Thomas, K.M.; Charron, D.F.; Waltner-Toews, D.; Schuster, C.; Maarouf, A.R.; Holt, J.D. A role of high impact weather events in waterborne disease outbreaks in Canada, 1975. Int. J. Environ. Health 2006, 16, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Nan, L.; Xu, D.; Ren, G.; Yang, K. Antibacterial performance of a cu-bearing stainless steel against microorganisms in tap water. J. Mater. Sci. Technol. 2015, 31, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Bodur, T.; Cagri-Mehmetoglu, A. Removal of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 biofilms on stainless steel using scallop shell powder. Food Control 2012, 25, 1–9. [Google Scholar] [CrossRef]
- Mahmudiono, T.; Bokov, D.O.; Jasim, S.A. State-of-the-art of convenient and low-cost electrochemical sensor for food contamination detection: Technical and analytical overview. Microchem. J. 2022, 179, 107460. [Google Scholar] [CrossRef]
- Drr, A.; Aa, A.; Mdl, A. Encapsulated essential oils: A perspective in food preservation. Future Foods 2022, 5, 100126. [Google Scholar]
- Simitzis, P.E.; Deligeorgis, S.G.; Bizelisa, J.A.; Dardamania, A.; Theodosioua, I.; Fegerosb, K. Effect of dietary oregano oil supplementation on lamb meat characteristics. Meat. Sci. 2008, 79, 217–223. [Google Scholar] [CrossRef]
- Nan, L.; Ren, G.; Wang, D.; Yang, K. Antibacterial performance of Cu-bearing stainless steel against Staphylococcus aureus and Pseudomonas aeruginosa in whole milk. J. Mater. Sci. Technol. 2016, 32, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.L.; Yang, C.G.; Yang, K. Novel Cu-bearing stainless steel: A promising food preservation material. J. Mater. Sci. Technol. 2022, 113, 246–252. [Google Scholar] [CrossRef]
- Shao, W.; Zhao, Q. Effect of corrosion rate and surface energy of silver coatings on bacterial adhesion. Colloid. Surface 2010, 76, 98–103. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, C.G.; Zhao, J.L.; Yang, K. Function of copper-bearing ferritic stainless steel in inhibiting food spoilage. Shanghai Met. 2020, 42, 88–92. [Google Scholar]
- Zhang, X.R.; Zhao, J.L.; Yang, C.G.; Yang, K. Release-type bacteriostasis of Cu-bearing stainless steel against planktonic bacteria served in liquid system. Mater. Chem. Phys. 2023, 295, 127083. [Google Scholar] [CrossRef]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Biocontrol ability and action mechanism of food-isolated yeast strains against botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol. 2015, 47, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.R.; Liu, X.F.; Yang, C.C.; Yang, K. New strategy to delay food spoilage: Application of new food contact material with antibacterial function. J. Mater. Sci. Technol. 2021, 70, 59–66. [Google Scholar] [CrossRef]
- Jay, J.M.; Vilai, J.P.; Hughes, M.E. Profile and activity of the bacterial biota of ground beef held from freshness to spoilage at 5–7 degrees C. Int. J. Food. Microbiol. 2003, 81, 105–111. [Google Scholar] [CrossRef]
- Mny, A.; Ey, B.; Ek, A. Safflower and bitter melon extracts on suppression of biogenic amine formation by fish spoilage bacteria and food borne pathogens. LWT 2021, 146, 111398. [Google Scholar]
- Qu, D.; Xu, Z.; Feng, Y.; Tian, S.; Zhang, X.; Lin, M.; Han, J.Z. Development of class model based on blood biochemical parameters as a diagnostic tool of pse meat. Meat Sci. 2017, 128, 24–29. [Google Scholar] [CrossRef]
- Grass, G.; Rensing, C.; Solioz, M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.R.; Yang, C.G.; Yang, K. Contact-killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference. ACS Appl. Mater. Interfaces 2020, 12, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Ehsan, R.; Ali, R.A.; Amin, I.; Saman, H.; Ali, D. Studies correlation of surface volta potential with galvanic corrosion initiation sites in solid-state welded Ti-Cu bimetal using AFM-SKPFM. Corros. Sci. 2018, 140, 30–39. [Google Scholar]
- Santo, C.E.; Lam, E.W.; Elowsky, C.G.; Quaranta, D.; Domaille, D.W.; Chang, C.J.; Grass, G. Bacterial killing by dry metallic copper surfaces. Appl. Environ. Microbiol. 2011, 77, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.M.; Jin, W.H.; Qasim, A.M.; Gao, A.; Peng, X.; Li, W.; Feng, H.Q.; Chu, P.K. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transferinduced reactive oxygen species. Biomaterials 2017, 124, 25–34. [Google Scholar] [CrossRef]
- Wang, D.; Cui, F.; Ren, L.; Tan, X.; Li, Q.; Li, J.; Li, T. Enhancing the inhibition potential of AHL acylase PF2571 against food spoilage by remodeling its substrate scope via a computationally driven protein design. J. Agric. Food Chem. 2022, 70, 14510–14521. [Google Scholar] [CrossRef]
- Gram, L.; Ravn, L.; Rasch, M. Food spoilage-interactions between food spoilage bacteria. Int. J. Food Microbiol. 2002, 78, 79–97. [Google Scholar] [CrossRef]
- Gram, L.; Christensen, A.B.; Ravn, L.; Molin, S.; Givskov, M. Production of acylated homoserine lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods. Appl. Environ. Microbiol. 1999, 65, 3458–3463. [Google Scholar] [CrossRef] [Green Version]
- Cerri, E.; Pirondi, A.; Bergmann, J.P. Friction stir welded AISI 304 metal sheets for application in food implants. Mater. Sci. Forum. 2021, 1016, 63–68. [Google Scholar] [CrossRef]
- Schmidt, R.H.; Erickson, D.J.; Steven, S.; Wolff, P. Characteristics of food contact surface materials: Stainless steel. Food Prot. Trends 2012, 32, 574–584. [Google Scholar]
- Zhao, J.L.; Lin, H.L.; Yang, C.G.; Yang, K. Application and research status of antibacterial Cu-bearing stainless steel. China Metall. 2022, 32, 26–41. [Google Scholar]
- Ren, L.; Yang, K.; Guo, L.; Chai, H.W. Preliminary study of anti-infective function of a copper-bearing stainless steel. Mater. Sci. Eng. 2012, 32, 1204–1209. [Google Scholar] [CrossRef]
- Lv, M.; Chen, S.H.; Dong, J.S.; Yang, K. Pilot study about the killing bacteria process and mechanism of ferrite antibacterial stainless steel. Maetall. Funct. Mater. 2005, 12, 10–13. [Google Scholar]
- Chen, S.H.; Lv, M.Q.; Zhang, J.D.; Dong, J.S.; Yang, K. Microstructure and antibacterial properties of Cu-containing antibacterial stainless steel. Acta. Maetall. Sin. 2004, 40, 314–318. [Google Scholar]
- Yang, K.; Dong, J.S.; Chen, S.H.; Lv, M.Q. The craftwork performance and resistance to corrosion of the Cu-containing antibacterial stainless steels. Chin. J. Mater. Res. 2006, 20, 523–527. [Google Scholar]
- Da, S.; Xu, D.; Yang, C.; Chen, J.; Shahzad, M.; Gu, T.; Yang, K.; Wang, G. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance. Mater. Sci. Eng. 2016, 69, 744–750. [Google Scholar]
- Ren, L.; Wong, H.M.; Yan, C.H.; Yeung, K.W.K. Osteogenic ability of Cu-bearing stainless steel. J. Biomed. Mater. Res. 2015, 103, 1433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Lin, G.; Xu, Z. Precipitation behavior of antibacterial phase in copper-bearing ferrite antibacterial stainless steel. Trans. Mater. Heat Treat. 2008, 29, 93–96. [Google Scholar]
- Kowalczyk, D.; Kordowska-Wiater, M.; Kara, M.; Ziba, E.; Wicek, A.E. Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends. Food Hydrocolloid. 2020, 101, 105539. [Google Scholar] [CrossRef]
- Adeyeye, S.; Ashaolu, T.J. Applications of nano-aterials in food packaging: A review. J. Food. Process. Eng. 2021, 44, e13708. [Google Scholar] [CrossRef]
- Singh, G.; Stephan, C.; Westerhoff, P.; Carlander, D.; Duncan, T.V. Measurement methods to detect, characterize, and quantify engineered nanomaterials in foods. Compr. Rev. Food Sci. Food Saf. 2014, 13, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Stormer, A.; Bott, J.; Kemmer, D. Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci. Tech. 2017, 63, 39–50. [Google Scholar] [CrossRef]
- Paidari, S.; Tahergorabi, R.; Anari, E.S.; Nafchi, A.M.; Zamindar, N.; Goli, M. Migration of various nanoparticles into food samples: A review. Foods 2021, 10, 2114. [Google Scholar] [CrossRef] [PubMed]
- Montoro Bustos, A.R.; Ruiz Encinar, J.; Sanz-Medel, A. Mass spectrometry for the characterisation of nanoparticles. Anal. Bioanal. Chem. 2013, 405, 5637–5643. [Google Scholar] [CrossRef] [PubMed]
- Baysal, G.; Demirci, C.; Özpinar, H. Proporties and synthesis of biosilver nanofilms for antimicrobial food packaging. Polymers 2023, 15, 689. [Google Scholar] [CrossRef]
- Mackevica, A.; Olsson, M.E.; Hansen, S.F. Silver nanoparticle release from commercially available plastic food containers into food simulants. J. Nanopart. Res. 2016, 18, 5–16. [Google Scholar] [CrossRef] [Green Version]
- von Goetz, N.; Fabricius, L.; Glaus, R.; Weitbrecht, V.; Gunther, D.; Hungerbuhler, K. Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food. Addit. Contam. 2013, 30, 612–620. [Google Scholar] [CrossRef]
- Kaur, R. Encapsulated natural antimicrobials: A promising way to reduce microbial growth in different food systems. Food Control 2021, 123, 107678. [Google Scholar] [CrossRef]
- Yao, T.; Janaswamy, S. Ordered hydrocolloids networks as delivery vehicles of nutraceuticals: Optimal encapsulation of curcumin and resveratrol. Food Hydrocolloid. 2022, 126, 107466. [Google Scholar] [CrossRef]
- Guo, Q.; Du, G.; Jia, H.; Fan, Q.; Yuan, Y. Essential oils encapsulated by biopolymers as antimicrobials in fruits and vegetables: A review. Food Biosci. 2021, 44, 101367. [Google Scholar] [CrossRef]
- EC. Commission Directive 2002/72/EC of 6 August 2002 relating to plastic materials and articles intended to come into contact with foodstuffs. Off. J. Eur. Communities 2002, L 220/18, 18–58. [Google Scholar]
- Wang, L. Phytoexclusion of heavy metals using low heavy metal accumulating cultivars: A green technology. J. Hazard. Mater. 2021, 413, 125427. [Google Scholar] [CrossRef]
- GB 9684–2012; Food Safety National Standard—Food Contact Materials and Products—Determination of Total Migration. Ministry of Health of the People’s Republic of China: Beijing, China, 2012.
- Shang, G.Q.; Zhao, M.; Wang, W.Y. Research on the safety regulations of stainless steel food contact materials at home and abroad. J. Food. Saf. Food Qual. 2014, 5, 2602–2608. [Google Scholar]
- Tang, Z.B.; Niu, J.L.; Huang, H.; Zhang, H.; Pei, J.; Ou, J.M. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications. J. Mech. Behav. Biomed. Mater. 2017, 72, 182–191. [Google Scholar] [CrossRef]
- Ren, L.; Xu, L.; Feng, J.; Zhang, Y.; Yang, K. In vitro study of role of trace amount of cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis. J. Mater. Sci. Mater. Med. 2012, 23, 1235–1245. [Google Scholar] [CrossRef]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
Incubation Time (days) | Indicators | |||
---|---|---|---|---|
Electrical Conductivity (μS cm−1) | TVB-N (mg 100 g−1) | |||
304-Cu SS | 304 SS | 304-Cu SS | 304 SS | |
0 | 867.6 ± 6.80 | 867.6 ± 6.80 | 13.22 ± 0.43 | 13.22 ± 0.43 |
1 | 947.6 ± 19.19 | 1090.4 ± 3.62 | 13.87 ± 0.11 | 14.76 ± 0.22 |
2 | 1354.2 ± 21.34 | 1567.2 ± 36.94 | 14.17 ± 0.26 | 16.31 ± 0.57 |
3 | 1457.3 ± 15.84 | 1771.8 ± 27.54 | 17.64 ± 0.71 | 21.49 ± 2.12 |
4 | 1608.9 ± 13.85 | 1990.6 ± 16.11 | 20.33 ± 0.68 | 30.48 ± 0.97 |
5 | 2148.0 ± 16.43 | 3312.0 ± 14.83 | 25.49 ± 1.48 | 42.66 ± 1.32 |
Element | Daily Average Value (mg/d) | Weekly Average Value (mg/week) | PMIDI (mg/(kg·bw·d)) | PIWI (mg/(kg·bw·week)) |
---|---|---|---|---|
Al | 6 | 42 | - | 7 |
C | 0.2 | 1.4 | - | - |
Cu | 3 | 21 | 0.5 | - |
Fe | 15 | 105 | 0.8 | - |
Pb | 0.05 | 0.35 | - | 0.025 |
Mn | - | - | - | - |
Ni | 0.4 | 2.8 | 0.005 | - |
Ag | 0.007 | 0.05 | - | - |
Sn | 4 | 28 | - | 14 |
Ti | 0.8 | 5.6 | - | - |
Zn | 17 | 119 | 1 | - |
Be | - | - | - | - |
Co | 1 | 7 | - | - |
Cd | 0.015 | 0.105 | - | 0.007 |
Hg | 0.01 | 0.07 | - | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yang, C.; Yang, K. Novel Antibacterial Metals as Food Contact Materials: A Review. Materials 2023, 16, 3029. https://doi.org/10.3390/ma16083029
Zhang X, Yang C, Yang K. Novel Antibacterial Metals as Food Contact Materials: A Review. Materials. 2023; 16(8):3029. https://doi.org/10.3390/ma16083029
Chicago/Turabian StyleZhang, Xinrui, Chunguang Yang, and Ke Yang. 2023. "Novel Antibacterial Metals as Food Contact Materials: A Review" Materials 16, no. 8: 3029. https://doi.org/10.3390/ma16083029
APA StyleZhang, X., Yang, C., & Yang, K. (2023). Novel Antibacterial Metals as Food Contact Materials: A Review. Materials, 16(8), 3029. https://doi.org/10.3390/ma16083029