Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model
Abstract
:1. Introduction
2. Data and Methods
2.1. Rice Husk Ash Concrete
2.2. Reptile Search Algorithm
3. Development of the Novel CMRSA–ANN Model
4. Prediction Model Development
4.1. ANN Model
4.2. CMRSA–ANN Model
4.3. SOA–SVM Model
4.4. SOA–RF Model
4.5. ELM Model
4.6. Empirical Model
5. Results and Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mei, X.; Cui, Z.; Sheng, Q.; Zhou, J.; Li, C. Application of the Improved POA-RF Model in Predicting the Strength and Energy Absorption Property of a Novel Aseismic Rubber-Concrete Material. Materials 2023, 16, 1286. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.S. Green concrete partially comprised of rice husk ash as a supplementary cementitious material–A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 3913–3923. [Google Scholar] [CrossRef]
- Sheheryar, M.; Rehan, R.; Nehdi, M.L. Estimating CO2 emission savings from ultrahigh performance concrete: A system dynamics approach. Materials 2021, 14, 995. [Google Scholar] [CrossRef] [PubMed]
- Hamada, H.M.; Thomas, B.S.; Yahaya, F.M.; Muthusamy, K.; Yang, J.; Abdalla, J.A.; Hawileh, R.A. Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review. J. Build. Eng. 2021, 40, 102286. [Google Scholar] [CrossRef]
- Amran, M.; Murali, G.; Fediuk, R.; Vatin, N.; Vasilev, Y.; Abdelgader, H. Palm oil fuel ash-based eco-efficient concrete: A critical review of the short-term properties. Materials 2021, 14, 332. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hadzima-Nyarko, M.; Zeyad, A.M.; Al-Harazin, S.Z. Properties and durability of concrete with olive waste ash as a partial cement replacement. Adv. Concr. Constr. 2021, 11, 59–71. [Google Scholar]
- Hakeem, I.Y.; Agwa, I.S.; Tayeh, B.A.; Abd-Elrahman, M.H. Effect of using a combination of rice husk and olive waste ashes on high-strength concrete properties. Case Stud. Constr. Mater. 2022, 17, e01486. [Google Scholar] [CrossRef]
- Herath, C.; Gunasekara, C.; Law, D.W.; Setunge, S. Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Constr. Build. Mater. 2020, 258, 120606. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Camões, A.; Branco, F.G. Synergetic effect of biomass fly ash on improvement of high-volume coal fly ash concrete properties. Constr. Build. Mater. 2022, 314, 125680. [Google Scholar] [CrossRef]
- Mehta, A.; Ashish, D.K. Silica fume and waste glass in cement concrete production: A review. J. Build. Eng. 2020, 29, 100888. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr. Build. Mater. 2019, 203, 174–187. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban, E.M.; Stel’makh, S.A.; Meskhi, B.; Shilov, A.A.; Varavka, V.; Özkılıç, Y.O.; Aksoylu, C.; Karalar, M. Composition Component Influence on Concrete Properties with the Additive of Rubber Tree Seed Shells. Appl. Sci. 2022, 12, 11744. [Google Scholar] [CrossRef]
- Shcherban, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Chernil’nik, A.; Özkılıç, Y.O.; Aksoylu, C. Normal-Weight Concrete with Improved Stress–Strain Characteristics Reinforced with Dispersed Coconut Fibers. Appl. Sci. 2022, 12, 11734. [Google Scholar] [CrossRef]
- Zeybek, Ö.; Özkılıç, Y.O.; Karalar, M.; Çelik, A.İ.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Burduhos-Nergis, D.P. Influence of replacing cement with waste glass on mechanical properties of concrete. Materials 2022, 15, 7513. [Google Scholar] [CrossRef] [PubMed]
- Karalar, M.; Bilir, T.; Çavuşlu, M.; Özkiliç, Y.O.; Sabri Sabri, M.M. Use of recycled coal bottom ash in reinforced concrete beams as replacement for aggregate. Front. Mater. 2022, 9, 1064604. [Google Scholar] [CrossRef]
- Qaidi, S.; Najm, H.M.; Abed, S.M.; Özkılıç, Y.O.; Al Dughaishi, H.; Alosta, M.; Sabri, M.M.S.; Alkhatib, F.; Milad, A. Concrete containing waste glass as an environmentally friendly aggregate: A review on fresh and mechanical characteristics. Materials 2022, 15, 6222. [Google Scholar] [CrossRef] [PubMed]
- Çelik, A.İ.; Özkılıç, Y.O.; Zeybek, Ö.; Karalar, M.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Bejinariu, C. Mechanical Behavior of Crushed Waste Glass as Replacement of Aggregates. Materials 2022, 15, 8093. [Google Scholar] [CrossRef] [PubMed]
- Karalar, M.; Özkılıç, Y.O.; Aksoylu, C.; Sabri MM, S.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M. Flexural behavior of reinforced concrete beams using waste marble powder towards application of sustainable concrete. Front. Mater. 2022, 9, 1068791. [Google Scholar] [CrossRef]
- Çelik, A.L.İ.; Özkılıç, Y. Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder. Steel Compos. Struct. 2023, 46, 689–707. [Google Scholar]
- Acar, M.C.; Çelik, A.İ.; Kayabaşı, R.; Şener, A.; Özdöner, N.; Özkılıç, Y. Production of perlite-based-aerated geopolymer using hydrogen peroxide as eco-friendly material for energy-efficient buildings. J. Mater. Res. Technol. 2023, 24, 81–99. [Google Scholar] [CrossRef]
- Santhosh, K.G.; Subhani, S.M.; Bahurudeen, A. Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete-A review. J. Clean. Prod. 2022, 354, 131736. [Google Scholar] [CrossRef]
- Amin, M.N.; Ahmad, W.; Khan, K.; Sayed, M.M. Mapping research knowledge on rice husk ash application in concrete: A scientometric review. Materials 2022, 15, 3431. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Song, Z. Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model. J. Clean. Prod. 2023, 382, 135279. [Google Scholar] [CrossRef]
- Ihedioha, J.N.; Ukoha, P.O.; Ekere, N.R. Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environ. Geochem. Health 2017, 39, 497–515. [Google Scholar] [CrossRef] [PubMed]
- He, Z.H.; Yang, Y.; Yuan, Q.; Shi, J.Y.; Liu, B.J.; Liang, C.F.; Du, S.G. Recycling hazardous water treatment sludge in cement-based construction materials: Mechanical properties, drying shrinkage, and nano-scale characteristics. J. Clean. Prod. 2021, 290, 125832. [Google Scholar] [CrossRef]
- Paris, J.M.; Roessler, J.G.; Ferraro, C.C.; DeFord, H.D.; Townsend, T.G. A review of waste products utilized as supplements to Portland cement in concrete. J. Clean. Prod. 2016, 121, 1–18. [Google Scholar] [CrossRef]
- Madandoust, R.; Ranjbar, M.M.; Moghadam, H.A.; Mousavi, S.Y. Mechanical properties and durability assessment of rice husk ash concrete. Biosyst. Eng. 2011, 110, 144–152. [Google Scholar] [CrossRef]
- Ahsan, M.B.; Hossain, Z. Supplemental use of rice husk ash (RHA) as a cementitious material in concrete industry. Constr. Build. Mater. 2018, 178, 1–9. [Google Scholar] [CrossRef]
- Noaman, M.A.; Karim, M.R.; Islam, M.N. Comparative study of pozzolanic and filler effect of rice husk ash on the mechanical properties and microstructure of brick aggregate concrete. Heliyon 2019, 5, e01926. [Google Scholar] [CrossRef]
- Mei, X.; Li, C.; Sheng, Q.; Cui, Z.; Zhou, J.; Dias, D. Development of a hybrid artificial intelligence model to predict the uniaxial compressive strength of a new aseismic layer made of rubber-sand concrete. Mech. Adv. Mater. Struct. 2022, 1–18. [Google Scholar] [CrossRef]
- Islam, M.N.; Mohd Zain, M.F.; Jamil, M. Prediction of strength and slump of rice husk ash incorporated high-performance concrete. J. Civ. Eng. Manag. 2012, 18, 310–317. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Liu, H.; Lin, X.; Zhang, R. A compressive strength prediction model based on the hydration reaction of cement paste by rice husk ash. Constr. Build. Mater. 2022, 340, 127841. [Google Scholar] [CrossRef]
- Hamidian, P.; Alidoust, P.; Golafshani, E.M.; Niavol, K.P.; Behnood, A. Introduction of a novel evolutionary neural network for evaluating the compressive strength of concretes: A case of Rice Husk Ash concrete. J. Build. Eng. 2022, 61, 105293. [Google Scholar] [CrossRef]
- Ozcan, G.; Kocak, Y.; Gulbandilar, E. Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models. Comput. Concr 2017, 19, 275–282. [Google Scholar] [CrossRef]
- Deshpande, N.; Londhe, S.; Kulkarni, S. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression. Int. J. Sustain. Built Environ. 2014, 3, 187–198. [Google Scholar] [CrossRef]
- Saha, P.; Debnath, P.; Thomas, P. Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach. Neural Comput. Appl. 2020, 32, 7995–8010. [Google Scholar] [CrossRef]
- Dao, D.V.; Ly, H.B.; Vu HL, T.; Le, T.T.; Pham, B.T. Investigation and optimization of the C-ANN structure in predicting the compressive strength of foamed concrete. Materials 2020, 13, 1072. [Google Scholar] [CrossRef]
- Bai, C.; Nguyen, H.; Asteris, P.G.; Nguyen-Thoi, T.; Zhou, J. A refreshing view of soft computing models for predicting the deflection of reinforced concrete beams. Appl. Soft Comput. 2020, 97, 106831. [Google Scholar] [CrossRef]
- Yaman, M.A.; Abd Elaty, M.; Taman, M. Predicting the ingredients of self compacting concrete using artificial neural network. Alex. Eng. J. 2017, 56, 523–532. [Google Scholar] [CrossRef]
- Han, Q.; Gui, C.; Xu, J.; Lacidogna, G. A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm. Constr. Build. Mater. 2019, 226, 734–742. [Google Scholar] [CrossRef]
- Azimi-Pour, M.; Eskandari-Naddaf, H.; Pakzad, A. Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete. Constr. Build. Mater. 2020, 230, 117021. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, G.; Huang, Y.; Aslani, F.; Nener, B. Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr. Build. Mater. 2019, 210, 713–719. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Deo, R.C.; Hilal, A.; Abd, A.M.; Bueno, L.C.; Salcedo-Sanz, S.; Nehdi, M.L. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv. Eng. Softw. 2018, 115, 112–125. [Google Scholar] [CrossRef]
- Iqtidar, A.; Bahadur Khan, N.; Kashif-ur-Rehman, S.; Faisal Javed, M.; Aslam, F.; Alyousef, R.; Alabduljabbar, H.; Mosavi, A. Prediction of compressive strength of rice husk ash concrete through different machine learning processes. Crystals 2021, 11, 352. [Google Scholar] [CrossRef]
- Amin, M.N.; Iqtidar, A.; Khan, K.; Javed, M.F.; Shalabi, F.I.; Qadir, M.G. Comparison of machine learning approaches with traditional methods for predicting the compressive strength of rice husk ash concrete. Crystals 2021, 11, 779. [Google Scholar] [CrossRef]
- Shaik, S.B.; Karthikeyan, J.; Jayabalan, P. Influence of using agro-waste as a partial replacement in cement on the compressive strength of concrete–A statistical approach. Constr. Build. Mater. 2020, 250, 118746. [Google Scholar] [CrossRef]
- Asteris, P.G.; Kolovos, K.G. Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 2019, 31 (Suppl. S1), 409–424. [Google Scholar] [CrossRef]
- Getahun, M.A.; Shitote, S.M.; Gariy, Z.C.A. Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Constr. Build. Mater. 2018, 190, 517–525. [Google Scholar] [CrossRef]
- Behnood, A.; Golafshani, E.M. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves. J. Clean. Prod. 2018, 202, 54–64. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Behnood, A.; Arashpour, M. Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Constr. Build. Mater. 2020, 232, 117266. [Google Scholar] [CrossRef]
- Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Bahadori, A.; Zandi, Y.; Salih, M.N.; Nguyen, H.; Dou, J.; Song, X.; Poi-Ngian, S. Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Appl. Sci. 2019, 9, 5534. [Google Scholar] [CrossRef]
- Han, B.; Wu, Y.; Liu, L. Prediction and uncertainty quantification of compressive strength of high-strength concrete using optimized machine learning algorithms. Struct. Concr. 2022, 23, 3772–3785. [Google Scholar] [CrossRef]
- Yan, F.; Lin, Z.; Wang, X.; Azarmi, F.; Sobolev, K. Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm. Compos. Struct. 2017, 161, 441–452. [Google Scholar] [CrossRef]
- Tien Bui, D.; Abdullahi MA, M.; Ghareh, S.; Moayedi, H.; Nguyen, H. Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete. Eng. Comput. 2021, 37, 701–712. [Google Scholar] [CrossRef]
- Huang, X.Y.; Wu, K.Y.; Wang, S.; Lu, T.; Lu, Y.F.; Deng, W.C.; Li, H.M. Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm. Materials 2022, 15, 3934. [Google Scholar] [CrossRef]
- Andalib, A.; Aminnejad, B.; Lork, A. Compressive Strength Prediction of Self-Compacting Concrete-A Bat Optimization Algorithm Based ANNs. Adv. Mater. Sci. Eng. 2022, 2022, 8404774. [Google Scholar] [CrossRef]
- Iftikhar, B.; Alih, S.C.; Vafaei, M.; Elkotb, M.A.; Shutaywi, M.; Javed, M.F.; Deebani, W.; Khan, M.I.; Aslam, F. Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison. J. Clean. Prod. 2022, 348, 131285. [Google Scholar] [CrossRef]
- Li, C.; Dias, D. Assessment of the Rock Elasticity Modulus Using Four Hybrid RF Models: A Combination of Data-Driven and Soft Techniques. Appl. Sci. 2023, 13, 2373. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Zhang, S. Application of Six Metaheuristic Optimization Algorithms and Random Forest in the uniaxial compressive strength of rock prediction. Appl. Soft Comput. 2022, 131, 109729. [Google Scholar] [CrossRef]
- Zhou, J.; Li, C.; Asteris, P.G.; Shi, X.; Armaghani, D.J. Chart-Based Granular Slope Stability Assessment Using the Modified Mohr–Coulomb Criterion. Arab. J. Sci. Eng. 2022, 48, 5549–5569. [Google Scholar] [CrossRef]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Zhou, J.; Dai, Y.; Du, K.; Khandelwal, M.; Li, C.; Qiu, Y. COSMA-RF: New intelligent model based on chaos optimized slime mould algorithm and random forest for estimating the peak cutting force of conical picks. Transp. Geotech. 2022, 36, 100806. [Google Scholar] [CrossRef]
- Zawbaa, H.M.; Emary, E.; Grosan, C. Feature selection via chaotic antlion optimization. PLoS ONE 2016, 11, e0150652. [Google Scholar] [CrossRef] [PubMed]
- Varol Altay, E.; Alatas, B. Bird swarm algorithms with chaotic mapping. Artif. Intell. Rev. 2020, 53, 1373–1414. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Armaghani, D.J.; Li, X. Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques. Undergr. Space 2021, 6, 379–395. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Khandelwal, M.; Zhang, X.; Monjezi, M.; Qiu, Y. Six novel hybrid extreme learning machine–swarm intelligence optimization (ELM–SIO) models for predicting backbreak in open-pit blasting. Nat. Resour. Res. 2022, 31, 3017–3039. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Tao, M.; Du, K.; Wang, S.; Armaghani, D.J.; Mohamad, E.T. Developing hybrid ELM-ALO, ELM-LSO and ELM-SOA models for predicting advance rate of TBM. Transp. Geotech. 2022, 36, 100819. [Google Scholar] [CrossRef]
- Zhou, J.; Dai, Y.; Huang, S.; Armaghani, D.J.; Qiu, Y. Proposing several hybrid SSA—Machine learning techniques for estimating rock cuttability by conical pick with relieved cutting modes. Acta Geotechnica 2022, 18, 1431–1446. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, H.; Song, C.; Wang, Z. Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network. Measurement 2022, 194, 110993. [Google Scholar] [CrossRef]
- Tipu, R.K.; Panchal, V.R.; Pandya, K.S. An ensemble approach to improve BPNN model precision for predicting compressive strength of high-performance concrete. In Structures; Elsevier: Amsterdam, The Netherlands, 2022; Volume 45, pp. 500–508. [Google Scholar]
- Zhang, J.; Dias, D.; An, L.; Li, C. Applying a novel slime mould algorithm-based artificial neural network to predict the settlement of a single footing on a soft soil reinforced by rigid inclusions. Mech. Adv. Mater. Struct. 2022, 1–16. [Google Scholar] [CrossRef]
- Abdalla, A.; Mohammed, A.S. Hybrid MARS-, MEP-, and ANN-based prediction for modeling the compressive strength of cement mortar with various sand size and clay mineral metakaolin content. Arch. Civ. Mech. Eng. 2022, 22, 194. [Google Scholar] [CrossRef]
- Gupta, T.; Rao, M.C. Prediction of compressive strength of geopolymer concrete using machine learning techniques. Struct. Concr. 2022, 23, 3073–3090. [Google Scholar] [CrossRef]
- Nasir, V.; Dibaji, S.; Alaswad, K.; Cool, J. Tool wear monitoring by ensemble learning and sensor fusion using power, sound, vibration, and AE signals. Manuf. Lett. 2021, 30, 32–38. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, Y.; Zhu, S.; Armaghani, D.J.; Li, C.; Nguyen, H.; Yagiz, S. Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Eng. Appl. Artif. Intell. 2021, 97, 104015. [Google Scholar] [CrossRef]
- Nasir, V.; Kooshkbaghi, M.; Cool, J.; Sassani, F. Cutting tool temperature monitoring in circular sawing: Measurement and multi-sensor feature fusion-based prediction. Int. J. Adv. Manuf. Technol. 2021, 112, 2413–2424. [Google Scholar] [CrossRef]
- Pianosi, F.; Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 2015, 67, 1–11. [Google Scholar] [CrossRef]
- Pianosi, F.; Wagener, T. Distribution-based sensitivity analysis from a generic input-output sample. Environ. Model. Softw. 2018, 108, 197–207. [Google Scholar] [CrossRef]
- Amin, M.N.; Iftikhar, B.; Khan, K.; Javed, M.F.; AbuArab, A.M.; Rehman, M.F. Prediction model for rice husk ash concrete using AI approach: Boosting and bagging algorithms. In Structures; Elsevier: Amsterdam, The Netherlands, 2023; Volume 50, pp. 745–757. [Google Scholar]
Variables | Statistical Indices | ||||
---|---|---|---|---|---|
Min | Max | Mean | Median | St. D | |
Cement | 249.0 | 783.0 | 409.02 | 400.00 | 105.47 |
RHA | 0.0 | 171.0 | 62.33 | 57.00 | 41.55 |
Superplasticizer | 0.0 | 11.3 | 3.34 | 1.85 | 3.52 |
Aggregate | 1040.0 | 1970.0 | 1621.51 | 1725.00 | 267.77 |
Water | 120.0 | 238.0 | 193.54 | 203.00 | 31.93 |
Age | 1.0 | 90.0 | 34.57 | 28.00 | 33.52 |
Compressive strength | 16.0 | 104.1 | 48.14 | 45.95 | 17.54 |
Variables | Cement | RHA | Superplasticizer | Aggregate | Water | Age | Compressive Strength |
---|---|---|---|---|---|---|---|
Cement | 1 | −0.219 | 0.253 | −0.238 | 0.083 | −0.106 | 0.370 |
RHA | 1 | −0.021 | −0.139 | 0.136 | −0.033 | −0.023 | |
Superplasticizer | 1 | −0.205 | 0.268 | −0.000 | 0.301 | ||
Aggregate | 1 | −0.549 | −0.063 | 0.147 | |||
Water | 1 | 0.011 | −0.244 | ||||
Age | 1 | 0.495 | |||||
Compressive strength | 1 |
Tests | Structure | Performance | ||
---|---|---|---|---|
HL-1 | HL-2 | R2 | RMSE | |
1 | 2 | / | 0.8322 | 6.8525 |
2 | 4 | / | 0.7839 | 7.7690 |
3 | 6 | / | 0.8100 | 7.2921 |
4 | 8 | / | 0.8225 | 7.0476 |
5 | 10 | / | 0.8554 | 6.3611 |
6 | 4 | 3 | 0.8772 | 5.8632 |
7 | 4 | 6 | 0.8312 | 6.8726 |
8 | 6 | 8 | 0.8025 | 7.4350 |
9 | 8 | 10 | 0.8143 | 7.2101 |
10 | 10 | 12 | 0.8338 | 6.8193 |
Tests | Neuron Numbers | Performance | |
---|---|---|---|
R2 | RMSE | ||
1 | 20 | 0.5268 | 11.5078 |
2 | 30 | 0.6460 | 9.9534 |
3 | 40 | 0.7327 | 8.6492 |
4 | 50 | 0.7595 | 8.2046 |
5 | 60 | 0.7851 | 7.7555 |
6 | 70 | 0.7997 | 7.4873 |
7 | 80 | 0.8589 | 6.2835 |
8 | 90 | 0.8373 | 6.7479 |
9 | 100 | 0.8932 | 5.4682 |
10 | 110 | 0.8788 | 5.8235 |
Model | Performance (Training Set) | Model | Performance (Test Set) | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | VAF % | RMSE | MAE | R2 | VAF % | RMSE | MAE | ||
ANN | 0.8772 | 87.7619 | 5.8632 | 4.1423 | ANN | 0.8572 | 86.0686 | 7.6353 | 5.2808 |
CMRSA–ANN | 0.9679 | 96.7884 | 2.9991 | 2.3169 | CMRSA–ANN | 0.9709 | 97.0911 | 3.4489 | 2.6451 |
SOA–SVM | 0.9595 | 96.0957 | 3.3651 | 1.2528 | SOA–SVM | 0.9494 | 95.0044 | 4.5436 | 3.0904 |
SOA–RF | 0.9224 | 92.2384 | 4.6610 | 3.2359 | SOA–RF | 0.8941 | 89.5048 | 6.5743 | 4.8037 |
ELM | 0.8932 | 89.3163 | 5.4682 | 4.0644 | ELM | 0.7020 | 70.6826 | 11.0294 | 8.5905 |
Empirical | 0.2023 | 50.0783 | 14.9418 | 12.0202 | Empirical | 0.3716 | 57.3263 | 16.0169 | 13.1709 |
No. | Measured | Predicted | |||||
---|---|---|---|---|---|---|---|
ANN | CMRSA–ANN | SOA–SVM | SOA–RF | ELM | Empirical | ||
1 | 82.20 | 100.09 | 87.90 | 83.20 | 78.36 | 95.91 | 64.96 |
2 | 72.80 | 72.04 | 74.38 | 75.93 | 69.61 | 83.15 | 55.26 |
3 | 43.50 | 44.85 | 43.59 | 42.07 | 42.81 | 37.48 | 31.36 |
4 | 48.70 | 41.82 | 47.91 | 43.25 | 54.26 | 32.36 | 39.11 |
5 | 16.00 | 27.32 | 16.50 | 22.53 | 28.28 | 30.40 | 20.62 |
6 | 85.70 | 75.39 | 85.31 | 84.08 | 73.81 | 94.46 | 62.58 |
7 | 43.00 | 39.93 | 44.88 | 38.92 | 35.43 | 38.80 | 17.57 |
8 | 33.60 | 30.16 | 33.05 | 31.06 | 33.00 | 23.74 | 23.33 |
9 | 94.00 | 92.21 | 92.18 | 80.18 | 78.79 | 81.86 | 81.00 |
10 | 31.10 | 34.15 | 31.28 | 31.15 | 33.57 | 31.17 | 10.31 |
11 | 57.30 | 55.35 | 58.61 | 59.18 | 52.92 | 61.25 | 57.31 |
12 | 41.30 | 40.49 | 38.96 | 39.98 | 40.03 | 46.12 | 28.98 |
13 | 20.80 | 24.08 | 24.19 | 20.48 | 26.86 | 20.58 | 11.78 |
14 | 22.70 | 38.28 | 19.66 | 33.55 | 35.84 | 32.02 | 47.24 |
15 | 38.80 | 38.68 | 36.91 | 40.64 | 39.48 | 42.21 | 20.21 |
16 | 60.00 | 60.42 | 63.35 | 54.54 | 59.20 | 49.98 | 54.46 |
17 | 55.50 | 53.28 | 61.66 | 59.50 | 51.22 | 70.86 | 49.78 |
18 | 61.00 | 63.75 | 62.30 | 62.09 | 54.07 | 63.77 | 57.04 |
19 | 63.00 | 59.20 | 58.12 | 61.35 | 55.48 | 57.46 | 60.53 |
20 | 66.00 | 70.44 | 69.78 | 63.07 | 63.24 | 74.16 | 56.84 |
21 | 52.00 | 50.39 | 54.58 | 55.85 | 53.52 | 48.25 | 26.83 |
22 | 43.30 | 50.25 | 48.77 | 43.25 | 43.49 | 50.56 | 50.28 |
23 | 26.00 | 35.75 | 24.35 | 34.61 | 34.82 | 24.83 | 22.97 |
24 | 64.50 | 67.10 | 63.77 | 66.99 | 64.85 | 34.38 | 56.76 |
25 | 35.30 | 36.41 | 36.21 | 35.36 | 35.36 | 32.85 | 24.82 |
26 | 83.20 | 88.88 | 76.67 | 86.11 | 80.21 | 69.73 | 73.68 |
27 | 50.00 | 50.77 | 51.73 | 48.15 | 44.58 | 60.87 | 39.90 |
28 | 56.50 | 57.93 | 56.92 | 57.31 | 53.43 | 44.06 | 62.27 |
29 | 35.50 | 20.85 | 30.46 | 33.68 | 39.28 | 35.10 | 34.13 |
30 | 36.10 | 34.92 | 34.59 | 36.03 | 35.78 | 32.35 | 16.05 |
31 | 20.90 | 42.96 | 15.75 | 33.59 | 35.93 | 44.32 | 53.03 |
32 | 51.00 | 60.39 | 61.63 | 54.00 | 54.33 | 50.00 | 54.81 |
33 | 95.20 | 79.24 | 92.32 | 97.05 | 80.43 | 71.92 | 56.78 |
34 | 28.00 | 30.20 | 29.90 | 27.95 | 29.14 | 26.68 | 22.74 |
35 | 60.00 | 56.15 | 57.96 | 60.36 | 57.60 | 53.10 | 30.99 |
36 | 46.80 | 45.49 | 45.32 | 44.13 | 45.88 | 34.48 | 35.04 |
37 | 39.30 | 35.34 | 35.41 | 37.21 | 37.24 | 38.70 | 18.93 |
38 | 38.00 | 38.96 | 36.98 | 39.21 | 43.23 | 25.48 | 23.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Mei, X.; Dias, D.; Cui, Z.; Zhou, J. Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model. Materials 2023, 16, 3135. https://doi.org/10.3390/ma16083135
Li C, Mei X, Dias D, Cui Z, Zhou J. Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model. Materials. 2023; 16(8):3135. https://doi.org/10.3390/ma16083135
Chicago/Turabian StyleLi, Chuanqi, Xiancheng Mei, Daniel Dias, Zhen Cui, and Jian Zhou. 2023. "Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model" Materials 16, no. 8: 3135. https://doi.org/10.3390/ma16083135
APA StyleLi, C., Mei, X., Dias, D., Cui, Z., & Zhou, J. (2023). Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model. Materials, 16(8), 3135. https://doi.org/10.3390/ma16083135