Hydrogen Absorption Performance and O2 Poisoning Resistance of Pd/ZrCo Composite Film
Abstract
:1. Introduction
2. Experimental
2.1. Material Preparation and Characterization
2.2. Hydrogen Storage Property Measurements
2.3. Computational Method
3. Results and Discussion
3.1. Structural Characterization
3.2. Hydrogenation Performance in Pure H2
3.3. Hydrogenation Performance against O2 Gaseous Impurity
4. Conclusions
- The initial hydrogen absorption kinetics were promoted by the combination of the Pd layer and the hydrogen absorption time to 95% saturation was reduced from 5490 s for the ZrCo film down to 270 s for the 10-Pd/ZrCo film.
- The hydrogen absorption studies at 10–300 °C against O2 poisoning indicated that the ZrCo and 10-Pd/ZrCo films showed a deepened poisoning and a decrease in the hydrogen absorption kinetics performance with an increasing temperature. However, 10-Pd/ZrCo had an obvious enhancement of the hydrogen absorption capacity than ZrCo below 100 °C, and it could maintain 95.8% of the hydrogen storage capacity at 100 °C.
- The adsorption energy and O-O bond length of the O2 molecules on ZrCo (110) were calculated as −7.46 eV and 3.55 Å, respectively, while those of O2 molecules on Pd (111) were −0.86 eV and 1.37 Å. O2 dissociates on ZrCo (110) to form ZrO2 easily and dissociates on Pd (111) to form a very small amount of PdO.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juarez, R.; Pedroche, G.; Loughlin, M.J.; Pampin, R.; Martinez, P.; De Pietri, M.; Alguacil, J.; Ogando, F.; Sauvan, P.; Lopez-Revelles, A.J.; et al. A Full and Heterogeneous Model of the Iter Tokamak for Comprehensive Nuclear Analyses. Nat. Energy 2021, 6, 150–157. [Google Scholar] [CrossRef]
- Cui, Y.; Zeng, X.; Kou, H.; Ding, J.; Wang, F. Numerical Modeling of Heat Transfer During Hydrogen Absorption in Thin Double-Layered Annular Zrco Beds. Results Phys. 2018, 9, 640–647. [Google Scholar] [CrossRef]
- Olabi, A.G. Developments in Sustainable Energy and Environmental Protection. Energy 2012, 39, 2–5. [Google Scholar] [CrossRef]
- Cipriani, G.; Di Dio, V.; Genduso, F.; La Cascia, D.; Liga, R.; Miceli, R.; Galluzzo, G.R. Perspective on Hydrogen Energy Carrier and Its Automotive Applications. Int. J. Hydrogen Energy 2014, 39, 8482–8494. [Google Scholar] [CrossRef]
- Wang, F.; Li, R.; Ding, C.; Tang, W.; Wang, Y.; Xu, S.; Yu, R.; Wu, Y. Recent Progress on the Hydrogen Storage Properties of Zrco-Based Alloys Applied in International Thermonuclear Experimental Reactor (Iter). Prog. Nat. Sci. Mater. Int. 2017, 27, 58–65. [Google Scholar] [CrossRef]
- Vedeneev, A.I.; Lobanov, V.N.; Starovoitova, S.V. Radiogenic Helium Thermodesorption from Titanium Tritide. J. Nucl. Mater. 1996, 233–237, 1189–1192. [Google Scholar] [CrossRef]
- Luo, L.; Ye, X.; Zhao, C.; Zhang, G.; Kou, H.; Xiong, R.; Sang, G.; Han, T. Effects of Mo Substitution on the Kinetic and Thermodynamic Characteristics of ZrCo1−XMox (X = 0–0.2) Alloys for Hydrogen Storage. Int. J. Hydrogen Energy 2020, 45, 2989–2998. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, X.; Tang, W.; Li, Z.; Huang, G.; Zou, H.; Yu, R.; Shui, J. Honeycomb Zrco Intermetallic for High Performance Hydrogen and Hydrogen Isotope Storage. ACS Appl. Mater. Interfaces 2023, 15, 3904–3911. [Google Scholar] [CrossRef] [PubMed]
- Al-Mufachi, N.A.; Nayebossadri, S.; Speight, J.D.; Bujalski, W.; Steinberger-Wilckens, R.; Book, D. Effects of Thin Film Pd Deposition on the Hydrogen Permeability of Pd60Cu40 wt% Alloy Membranes. J. Membr. Sci. 2015, 493, 580–588. [Google Scholar] [CrossRef]
- Dahlmeyer, J.; Garrison, T.; Garrison, T.; Darkey, S.; Massicotte, F.; Rebeiz, K.; Nesbit, S.; Craft, A. Effects of Hydrogen Exposure Temperature on the Tensile Strength, Microhardness and Ductility of Pd/Ag (25wt.%) Alloy. Scr. Mater. 2011, 64, 789–792. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Zhang, M.; Hu, R.; Kou, H.; Li, J.; Xue, X. Hydrogen Absorption Behavior of Zr-Based Getter Materials with Pd Ag Coating against Gaseous Impurities. Int. J. Hydrogen Energy 2016, 41, 14778–14787. [Google Scholar] [CrossRef]
- Wang, F.; Li, R.; Ding, C.; Tang, W.; Wang, Y.; Xu, S.; Yu, R.; Wang, Z. Effect of Catalytic Pd Coating on the Hydrogen Storage Performances of ZrCo Alloy by Electroless Plating Method. Int. J. Hydrogen Energy 2017, 42, 11510–11522. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab-Initio Molecular-Dynamics Simulation of the Liquid-Metal Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Guo, J.X.; Wei, L.J.; Ge, D.Y.; Guan, L.; Wang, Y.L.; Liu, B.T. Dissociation and Reconstruction of O-2 on Al (111) Studied by First-Principles. Appl. Surf. Sci. 2013, 264, 247–254. [Google Scholar] [CrossRef]
- Zhang, H.; Su, R.; Chen, D.; Shi, L. Thermal Desorption Behaviors of Helium in Zr-Co Films Prepared by Sputtering Deposition Method. Vacuum 2016, 130, 174–178. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Liang, L.; Luo, Y.; Xiong, T.; Balogun, M.S.; Wang, Z.; Yu, R. Synergetic Catalyst Effect of Ni/Pd Dual Metal Coating Accelerating Hydrogen Storage Properties of Zrco Alloy. Int. J. Hydrogen Energy 2022, 47, 9946–9957. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, X.; Liang, Z.; Kou, H.; Luo, W.; Chen, C.; Jiang, L.; Chen, L. Improvement on the Kinetic and Thermodynamic Characteristics of Zr1−XNbxCo (X = 0–0.2) Alloys for Hydrogen Isotope Storage and Delivery. J. Alloys Compd. 2019, 784, 1062–1070. [Google Scholar] [CrossRef]
- Xu, X.; Song, C. Improving Hydrogen Storage/Release Properties of Magnesium with Nano-Sized Metal Catalysts as Measured by Tapered Element Oscillating Microbalance. Appl. Catal. A Gen. 2006, 300, 130–138. [Google Scholar] [CrossRef]
- Xu, S.; Wang, F.; Tang, W.; Wang, Y.; Yu, R. Microstructure and Hydrogen Storage Properties of Zr0.8Ti0.2Co1−xFex (X = 0, 0.1, 0.2, 0.3) Alloys. Int. J. Hydrogen Energy 2018, 43, 839–847. [Google Scholar] [CrossRef]
- Kou, H.; Luo, W.; Huang, Z.; Sang, G.; Hu, C.; Chen, C.; Zhang, G.; Luo, D.; Liu, M.; Zheng, S. Effects of Temperature and Hydrogen Pressure on the Activation Behavior of Zrco. Int. J. Hydrogen Energy 2016, 41, 10811–10818. [Google Scholar] [CrossRef]
- Guo, X.; Wang, S.; Li, Z.; Yuan, B.; Ye, J.; Qiu, H.; Wu, Y.; Liu, X.; Jiang, L. Study on the Poisoning Resistance of Pd-Coated Zrco Alloy Prepared by Electroless Plating Method. Fusion Eng. Des. 2016, 113, 195–200. [Google Scholar] [CrossRef]
- Padama, A.A.B.; Ozawa, N.; Budhi, Y.W.; Kasai, H. Density Functional Theory Investigation on the Dissociation and Adsorption Processes of N-2 on Pd(111) and Pd3ag(111) Surfaces. Jpn. J. Appl. Phys. 2011, 50, 045701. [Google Scholar] [CrossRef]
- Arora, K.; Sandil, D.; Sharma, G.; Srivastava, S.; Puri, N.K. Effect of Low Pressure Hydrogen Environment on Crystallographic Properties of PdO Nanoparticles. Int. J. Hydrogen Energy 2016, 41, 22155–22161. [Google Scholar] [CrossRef]
Sample | Substrate | Working Pressure | Background Pressure | Sputtering Power | Deposition Time | Substrate Temperature | |
---|---|---|---|---|---|---|---|
Pd Layer | ZrCo Layer | ||||||
Pd | SiO2 | 0.9 Pa | 2 × 10−3 Pa | 200 W | 60 min | - | 500 °C |
ZrCo | Si | - | 60 min | ||||
5-Pd/ZrCo | SiO2 | 5 min | 60 min | ||||
10-Pd/ZrCo | SiO2 | 10 min | 60 min | ||||
20-Pd/ZrCo | SiO2 | 20 min | 60 min |
Hydrogen Absorption Capacity (wt%) | Hydrogen Absorption Time to 95% Saturation (s) | Rate Constant | |
---|---|---|---|
Pd | 0.70 | 24 | 0.402 |
ZrCo | 1.60 | 5490 | 0.003 |
5-Pd/ZrCo | 1.57 | 1596 | 0.009 |
10-Pd/ZrCo | 1.55 | 270 | 0.023 |
20-Pd/ZrCo | 1.45 | 124 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Qian, R.; Feng, H.; Zhu, D.; Wu, C. Hydrogen Absorption Performance and O2 Poisoning Resistance of Pd/ZrCo Composite Film. Materials 2023, 16, 3159. https://doi.org/10.3390/ma16083159
Qian Y, Qian R, Feng H, Zhu D, Wu C. Hydrogen Absorption Performance and O2 Poisoning Resistance of Pd/ZrCo Composite Film. Materials. 2023; 16(8):3159. https://doi.org/10.3390/ma16083159
Chicago/Turabian StyleQian, Yiyao, Ruijun Qian, Hetian Feng, Dachuan Zhu, and Chaoling Wu. 2023. "Hydrogen Absorption Performance and O2 Poisoning Resistance of Pd/ZrCo Composite Film" Materials 16, no. 8: 3159. https://doi.org/10.3390/ma16083159
APA StyleQian, Y., Qian, R., Feng, H., Zhu, D., & Wu, C. (2023). Hydrogen Absorption Performance and O2 Poisoning Resistance of Pd/ZrCo Composite Film. Materials, 16(8), 3159. https://doi.org/10.3390/ma16083159