Effect of Strontium Substitution on the Tribocatalytic Performance of Barium Titanate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of BST
2.2. Characterizations
2.3. Tribocatalytic Dye Degradation
2.4. Detection of Active Species
3. Results and Discussion
3.1. Structure and Morphology
3.2. Tribocatalytic Activity
3.3. Photoelectric Properties
3.4. Tribocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ReferencesLi, P.C.; Wu, J.; Wu, Z.; Jia, Y.M.; Ma, J.P.; Chen, W.P.; Zhang, L.H.; Yang, J.; Liu, Y.S. Strong tribocatalytic dye decomposition through utilizing triboelectric energy of barium strontium titanate nanoparticles. Nano Energy 2019, 63, 103832. [Google Scholar]
- Wu, Z.; Xu, T.S.; Ruan, L.J.; Guan, J.F.; Huang, S.H.; Dong, X.P.; Li, H.M.; Jia, Y.M. Strong Tribocatalytic Nitrogen Fixation of Graphite Carbon Nitride g-C3N4 through Harvesting Friction Energy. Nanomaterials 2022, 12, 1981. [Google Scholar] [CrossRef] [PubMed]
- Li, P.C.; Tang, C.Y.; Xiao, X.H.; Jia, Y.M.; Chen, W.P. Flammable gases produced by TiO2 nanoparticles under magnetic stirring in water. Friction 2022, 10, 1127–1133. [Google Scholar] [CrossRef]
- Sun, C.Z.; Guo, X.Y.; Ji, R.; Hu, C.Z.; Liu, L.J.; Fang, L.; Cheng, Z.X.; Luo, N.N. Strong tribocatalytic dye degradation by tungsten bronze Ba4Nd2Fe2Nb8O30. Ceram. Int. 2021, 47, 5038–5043. [Google Scholar] [CrossRef]
- Zhao, J.H.; Chen, L.; Luo, W.S.; Li, H.M.; Wu, Z.; Xu, Z.Y.; Zhang, Y.M.; Zhang, H.F.; Yuan, G.L.; Gao, J.; et al. Strong tribo-catalysis of zinc oxide nanorods via triboelectrically-harvesting friction energy. Ceram. Int. 2020, 46, 25293–25298. [Google Scholar] [CrossRef]
- Cui, X.D.; Li, P.C.; Lei, H.; Tu, C.; Wang, D.L.; Wang, Z.; Chen, W.P. Greatly enhanced tribocatalytic degradation of organic pollutants by TiO2 nanoparticles through efficiently harvesting mechanical energy. Sep. Purif. Technol. 2022, 289, 120814. [Google Scholar] [CrossRef]
- Wu, M.X.; Lei, H.; Chen, J.Y.; Dong, X.P. Friction energy harvesting on bismuth tungstate catalyst for tribocatalytic degradation of organic pollutants. J. Colloid Interface Sci. 2021, 587, 883–890. [Google Scholar] [CrossRef]
- Hu, J.; Ma, W.; Pan, Y.Z.; Chen, Z.; Zhang, Z.; Wan, C.X.; Sun, Y.W.; Qiu, C.X. Resolving the Tribo-catalytic reaction mechanism for biochar regulated Zinc Oxide and its application in protein transformation. J. Colloid Interface Sci. 2022, 607, 1908–1918. [Google Scholar] [CrossRef]
- Yang, B.A.; Chen, H.B.; Guo, X.D.; Wang, L.; Xu, T.; Bian, J.H.; Yang, Y.D.; Liu, Q.D.; Du, Y.P.; Lou, X.J. Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation. J. Mater. Chem. C 2020, 8, 14845–14854. [Google Scholar] [CrossRef]
- Gao, Q.; Meng, J.; Yang, Y.; Lin, Q.Y.; Lu, Y.F.; Wei, X.; Li, J.X.; Han, G.R.; Zhang, Z. Zirconium doping in calcium titanate perovskite oxides with surface nanostep structure for promoting photocatalytic hydrogen evolution. Appl. Surf. Sci. 2021, 542, 148544. [Google Scholar] [CrossRef]
- Lin, E.Z.; Wu, J.; Qin, N.; Yuan, B.W.; Kang, Z.H.; Bao, D.H. Enhanced piezocatalytic, photocatalytic and piezo-/photocatalytic performance of diphasic Ba1-xCaxTiO3 nanowires near a solubility limit. Catal. Sci. Technol. 2019, 9, 6863–6874. [Google Scholar] [CrossRef]
- Yu, C.; Lan, S.Y.; Cheng, S.T.; Zeng, L.X.; Zhu, M.S. Ba substituted SrTiO3 induced lattice deformation for enhanced piezocatalytic removal of carbamazepine from water. J. Hazard. Mater. 2022, 424, 127440. [Google Scholar] [CrossRef]
- Cui, Y.F.; Briscoe, J.; Dunn, S. Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3-Influence on the Carrier Separation and Stern Layer Formation. Chem. Mater. 2013, 25, 4215–4223. [Google Scholar] [CrossRef]
- Kappadan, S.; Gebreab, T.W.; Thomas, S.; Kalarikkal, N. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process. 2016, 51, 42–47. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Mathe, V.L.; Kulkarni, S.B. Photocatalytic degradation of salicylic acid using BaTiO3 photocatalyst under ultraviolet light illumination. J. Mater. Sci. Mater. Electron. 2018, 29, 15069–15073. [Google Scholar] [CrossRef]
- Zhao, C.L.; Huang, Y.L.; Wu, J.G. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat 2020, 2, 1163–1190. [Google Scholar] [CrossRef]
- Moussi, R.; Bougoffa, A.; Trabelsi, A.; Dhahri, E.; Graca, M.P.F.; Valente, M.A.; Barille, R.; Rguiti, M. Investigation of the effect of Sr-substitution on the structural, morphological, dielectric, and energy storage properties of BaTiO3-based perovskite ceramics. Inorg. Chem. Commun. 2022, 137, 109225. [Google Scholar] [CrossRef]
- Yang, B.; Chen, H.B.; Yang, Y.D.; Wang, L.; Bian, J.H.; Liu, Q.D.; Lou, X.J. Insights into the tribo-/pyro-catalysis using Sr-doped BaTiO3 ferroelectric nanocrystals for efficient water remediation. Chem. Eng. J. 2021, 416, 128986. [Google Scholar] [CrossRef]
- Xu, X.L.; Xiao, L.B.; Jia, Y.M.; Wu, Z.; Wang, F.F.; Wang, Y.J.; Haugen, N.O.; Huang, H.T. Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: Harvesting cold-hot alternation energy near room-temperature. Energy Environ. Sci. 2018, 11, 2198–2207. [Google Scholar] [CrossRef]
- Maity, S.; Sasmal, A.; Sen, S. Comprehensive characterization of Ba1−x,SrxTiO3: Correlation between structural and multifunctional properties. J. Alloys Compd. 2021, 884, 161072. [Google Scholar] [CrossRef]
- Patru, R.E.; Ganea, C.P.; Stanciu, C.A.; Surdu, V.A.; Trusca, R.; Ianculescu, A.C.; Pintilie, I.; Pintilie, L. (Ba,Sr)TiO3 solid solutions sintered from sol-gel derived powders: An insight into the composition and temperature dependent dielectric behavior. Ceram. Int. 2020, 46, 4180–4190. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Q.; Lin, E.Z.; Yuan, B.W.; Qin, N.; Thatikonda, S.K.; Bao, D.H. Insights into the Role of Ferroelectric Polarization in Piezocatalysis of Nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces 2018, 10, 17842–17849. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Manuspiya, H. Correlation between size and phase structure of crystalline BaTiO3 particles synthesized by sol-gel method. Mater. Res. Express 2019, 6, 065062. [Google Scholar] [CrossRef]
- Park, K.I.; Bae, S.B.; Yang, S.H.; Lee, H.I.; Lee, K.; Lee, S.J. Lead-free BaTiO3 nanowires-based flexible nanocomposite generator. Nanoscale 2014, 6, 8962–8968. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Xiao, L.Y.; Zhang, Y.; Sun, H.J. Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye. J. Mater. 2020, 6, 256–262. [Google Scholar] [CrossRef]
- Ruan, L.J.; Jia, Y.M.; Guan, J.F.; Xue, B.; Huang, S.H.; Wu, Z.; Li, G.R.; Cui, X.Z. Highly piezocatalysis of metal-organic frameworks material ZIF-8 under vibration. Sep. Purif. Technol. 2022, 283, 120159. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, A.C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, K.H.; Choi, M.; Jeon, J.; Yoon, H.J.; Choi, J.; Lee, Y.S.; Lee, M.; Wie, J.J. Rational molecular design of polymeric materials toward efficient triboelectric energy harvesting. Nano Energy 2019, 66, 104158. [Google Scholar] [CrossRef]
- Lacks, D.J.; Sankaran, R.M. Contact electrification of insulating materials. J. Phys. D 2011, 44, 453001. [Google Scholar] [CrossRef]
- Hu, J.L.; Ma, W.; Pan, Y.Z.; Cheng, Z.H.; Yu, S.G.; Gao, J.; Zhang, Z.; Wan, C.X.; Qiu, C.X. Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface. Chemosphere 2021, 276, 130170. [Google Scholar] [CrossRef]
- Zhang, M.X.; Sun, X.J.; Wang, C.L.; Wang, Y.B.; Tan, Z.H.; Li, J.; Xi, B.D. Photocatalytic degradation of rhodamine B using Bi4O5Br2-doped ZSM-5. Mater. Chem. Phys. 2022, 278, 125697. [Google Scholar] [CrossRef]
- Sun, C.Z.; Guo, X.Y.; Hu, C.Z.; Liu, L.J.; Fang, L.; Cheng, Z.X.; Luo, N.N. Tribocatalytic degradation of dyes by tungsten bronze ferroelectric Ba2.5Sr2.5Nb8Ta2O30 submicron particles. RSC Adv. 2021, 11, 13386–13395. [Google Scholar] [CrossRef]
- Ji, J.M.; Pu, Y.P.; Chang, L.L.; Ouyang, T.; Wang, P.F.; He, C.P.; Zhou, S.Y. Boosting the separation of bulk charge in Na0.5Bi0.5TiO3 by the synergetic effect of ferroelectric polarization and thin-sheet shape. Ceram. Int. 2021, 47, 27650–27659. [Google Scholar] [CrossRef]
- Morris, M.R.; Pendlebury, S.R.; Hong, J.; Dunn, S.; Durrant, J.R. Effect of Internal Electric Fields on Charge Carrier Dynamics in a Ferroelectric Material for Solar Energy Conversion. Adv. Mater. 2016, 28, 7123–7128. [Google Scholar] [CrossRef]
- Tang, Q.; Zhu, M.D.; Zhang, H.F.; Gao, J.; Kwok, K.W.; Kong, L.B.; Jia, Y.M.; Liu, L.J.; Peng, B.L. Enhanced tribocatalytic degradation of dye pollutants through governing the charge accumulations on the surface of ferroelectric barium zirconium titanate particles. Nano Energy 2022, 100, 107519. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; Mohite, B.M. Role of Nanotechnology in Photocatalysis Application. Recent Pat. Nanotechnol. 2023, 17, 5–7. [Google Scholar] [CrossRef]
- Ruan, L.J.; Jia, Y.M.; Guan, J.F.; Xue, B.; Huang, S.H.; Wang, Z.H.; Fu, Y.H.; Wu, Z. Tribo-electro-catalytic dye degradation driven by mechanical friction using MOF-derived NiCo2O4 double-shelled nanocages. J. Clean. Prod. 2022, 345, 131060. [Google Scholar] [CrossRef]
- Cao, J.L.; Jia, Y.M.; Wan, X.M.; Li, B.B.; Zhang, Y.M.; Huang, S.H.; Yang, H.Y.; Yuan, G.L.; Li, G.R.; Cui, X.Z.; et al. Strong tribocatalysis of strontium titanate nanofibers through harvesting friction energy for dye decomposition. Ceram. Int. 2022, 48, 9651–9657. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Yang, Y.; Hu, Y.; Rao, W.-F. Effect of Strontium Substitution on the Tribocatalytic Performance of Barium Titanate. Materials 2023, 16, 3160. https://doi.org/10.3390/ma16083160
Liu S, Yang Y, Hu Y, Rao W-F. Effect of Strontium Substitution on the Tribocatalytic Performance of Barium Titanate. Materials. 2023; 16(8):3160. https://doi.org/10.3390/ma16083160
Chicago/Turabian StyleLiu, Siyu, Yaodong Yang, Yongming Hu, and Wei-Feng Rao. 2023. "Effect of Strontium Substitution on the Tribocatalytic Performance of Barium Titanate" Materials 16, no. 8: 3160. https://doi.org/10.3390/ma16083160
APA StyleLiu, S., Yang, Y., Hu, Y., & Rao, W. -F. (2023). Effect of Strontium Substitution on the Tribocatalytic Performance of Barium Titanate. Materials, 16(8), 3160. https://doi.org/10.3390/ma16083160