Electrically Tunable Defect-Mode Wavelengths in a Liquid-Crystal-in-Cavity Hybrid Structure in the Near-Infrared Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparations
2.3. Simulation and Measurements
3. Results and Discussion
3.1. Birefringence in the LC Material E7
3.2. Simulation of the Transmission Spectra of PC/LC Structures
3.3. Electro-Optical Response of the PC/LC Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486. [Google Scholar] [CrossRef]
- Ma, G.; Tang, S.H.; Shen, J.; Zhang, Z.; Hua, Z. Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure. Opt. Lett. 2004, 29, 1769–1771. [Google Scholar] [CrossRef]
- Chigrinov, V.G. Liquid Crystal Devices: Physics and Applications; Artech House Publishers: London, UK, 1999. [Google Scholar]
- Ha, Y.-K.; Yang, Y.-C.; Kim, J.-E.; Park, H.; Kee, C.-S.; Lim, H.; Lee, J.-C. Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals. Appl. Phys. Lett. 2001, 79, 15–17. [Google Scholar] [CrossRef]
- Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer. Jpn. J. Appl. Phys. 2002, 41, L1482. [Google Scholar] [CrossRef]
- Matsuhisa, Y.; Ozaki, R.; Yoshino, K.; Ozaki, M. High Q defect mode and laser action in one-dimensional hybrid photonic crystal containing cholesteric liquid crystal. Appl. Phys. Lett. 2006, 89, 101109. [Google Scholar] [CrossRef]
- Ozaki, R.; Matsuhisa, Y.; Ozaki, M.; Yoshino, K. Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer. Appl. Phys. Lett. 2004, 84, 1844–1846. [Google Scholar] [CrossRef]
- Singh, P.; Thapa, K.B.; Singh, S.K.; Gupta, A.K. Study of design tunable optical sensor and monochromatic filter of the one-dimensional periodic structure of TiO2/MgF2 with defect layer of liquid crystal (LC) sandwiched with two silver layers. Plasmonics 2020, 15, 1845–1854. [Google Scholar] [CrossRef]
- Wang, H.-T.; Timofeev, I.V.; Chang, K.; Zyryanov, V.Y.; Lee, W. Tunable narrow-bandpass filter based on an asymmetric photonic bandgap structure with a dual-mode liquid crystal. Opt. Express 2014, 22, 15097–15103. [Google Scholar] [CrossRef]
- Ozaki, R.; Moritake, H.; Yoshino, K.; Ozaki, M. Analysis of defect mode switching response in one-dimensional photonic crystal with a nematic liquid crystal defect layer. J. Appl. Phys. 2007, 101, 033503. [Google Scholar] [CrossRef]
- Chen, C.-H.; Zyryanov, V.Y.; Lee, W. Switching of defect modes in a photonic structure with a tristable smectic—A liquid crystal. Appl. Phys. Express 2012, 5, 082003. [Google Scholar] [CrossRef]
- Wu, P.-C.; Hsiao, C.-Y.; Lee, W. Photonic bandgap–cholesteric device with electrical tunability and optical tristability in its defect modes. Crystals 2017, 7, 184. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Chang, W.-Y.; Wu, C.-Y.; Zyryanov, V.Y.; Lee, W. Optical properties of one-dimensional photonic crystal with a twisted-nematic defect layer. Opt. Express 2010, 18, 26959–26964. [Google Scholar] [CrossRef]
- Mohamed, M.; Hameed, M.F.O.; El-Okr, M.; Obayya, S.S. Characterization of one dimensional liquid crystal photonic crystal structure. Optik 2016, 127, 8774–8781. [Google Scholar] [CrossRef]
- Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Optical property of electro-tunable defect mode in 1D periodic structure with light crystal defect layer. Electron. Commun. Jpn. 2004, 87, 24–31. [Google Scholar] [CrossRef]
- Zyryanov, V.Y.; Myslivets, S.A.; Gunyakov, V.A.; Parshin, A.M.; Arkhipkin, V.G.; Shabanov, V.F.; Lee, W. Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell. Opt. Express 2010, 18, 1283–1288. [Google Scholar] [CrossRef]
- Gunyakov, V.; Myslivets, S.; Parshin, A.; Zyryanov, V.Y.; Arkhipkin, V.; Shabanov, V. Magnetic-field control of the transmission of a photonic crystal with a liquid-crystal defect. Tech. Phys. 2010, 55, 1484–1489. [Google Scholar] [CrossRef]
- Gunyakov, V.; Krakhalev, M.; Zyryanov, V.Y.; Shabanov, V.; Loiko, V. Modulation of defect modes intensity by controlled light scattering in photonic crystal with liquid crystal domain structure. J. Quant. Spectrosc. Radiat. Transf. 2016, 178, 152–157. [Google Scholar] [CrossRef]
- Arkhipkin, V.; Gunyakov, V.; Myslivets, S.; Zyryanov, V.Y.; Shabanov, V.; Lee, W. Electro-and magneto-optical switching of defect modes in one-dimensional photonic crystals. J. Exp. Theor. Phys. 2011, 112, 577–587. [Google Scholar] [CrossRef]
- Gunyakov, V.; Gerasimov, V.; Myslivets, S.; Arkhipkin, V.; Vetrov, S.Y.; Kamaev, G.; Shabanov, A.; Zyryanov, V.Y.; Shabanov, V. Thermooptical switching in a one-dimensional photonic crystal. Tech. Phys. Lett. 2006, 32, 951–953. [Google Scholar] [CrossRef]
- Gunyakov, V.; Gerasimov, V.; Myslivets, S.; Arkhipkin, V.; Kamaev, G.; Shabanov, A.; Shabanov, V. Planar photonic crystal with thermo-optical switching. In Proceedings of the IEEE 2006 International Workshop on Laser and Fiber-Optical Networks Modeling (LFNM), Kharkiv, Ukraine, 29 June–7 July 2006; pp. 366–369. [Google Scholar]
- Hsiao, Y.-C.; Wang, H.-T.; Lee, W. Thermodielectric generation of defect modes in a photonic liquid crystal. Opt. Express 2014, 22, 3593–3599. [Google Scholar] [CrossRef]
- Arkhipkin, V.; Gunyakov, V.; Myslivets, S.; Gerasimov, V.; Zyryanov, V.Y.; Vetrov, S.Y.; Shabanov, V. One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes. J. Exp. Theor. Phys. 2008, 106, 388–398. [Google Scholar] [CrossRef]
- Ozaki, R.; Ozaki, M.; Yoshino, K. Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer. Jpn. J. Appl. Phys. 2004, 43, L1477. [Google Scholar] [CrossRef]
- Wang, H.-T.; Wu, P.-C.; Timofeev, I.V.; Zyryanov, V.Y.; Lee, W. Dynamic tuning and memory switching of defect modes in a hybrid photonic structure. Crystals 2016, 6, 129. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Zou, Y.-H.; Timofeev, I.; Lin, Y.-T.; Zyryanov, V.Y.; Hsu, J.-S.; Lee, W. Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer. Opt. Express 2011, 19, 7349–7355. [Google Scholar] [CrossRef]
- Huang, K.-C.; Hsiao, Y.-C.; Timofeev, I.V.; Zyryanov, V.Y.; Lee, W. Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal. Opt. Express 2016, 24, 25019–25025. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, R.; Ozaki, M.; Yoshino, K. Defect mode switching in one-dimensional photonic crystal with nematic liquid crystal as defect layer. Jpn. J. Appl. Phys. 2003, 42, L669. [Google Scholar] [CrossRef]
- Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal. Appl. Phys. Lett. 2003, 82, 3593–3595. [Google Scholar] [CrossRef]
- Teng, X.-F.; Zhang, Y.-T.; Poon, C.C.; Bonato, P. Wearable medical systems for p-health. IEEE Rev. Biomed. Eng. 2008, 1, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Mittleman, D.M.; Jacobsen, R.H.; Neelamani, R.; Baraniuk, R.G.; Nuss, M.C. Gas sensing using terahertz time-domain spectroscopy. Appl. Phys. B 1998, 67, 379–390. [Google Scholar] [CrossRef]
- Aggrawal, H.; Chen, P.; Assefzadeh, M.M.; Jamali, B.; Babakhani, A. Gone in a picosecond: Techniques for the generation and detection of picosecond pulses and their applications. IEEE Microw. Mag. 2016, 17, 24–38. [Google Scholar] [CrossRef]
- Rodwell, M.; Fang, Y.; Rode, J.; Wu, J.; Markman, B.; Brunelli, S.Š.; Klamkin, J.; Urteaga, M. 100–340ghz systems: Transistors and applications. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 14.3.1–14.3.4. [Google Scholar]
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef]
- Aladsani, M.; Alkhateeb, A.; Trichopoulos, G.C. Leveraging mmWave imaging and communications for simultaneous localization and mapping. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4539–4543. [Google Scholar]
- Petrov, V.; Pyattaev, A.; Moltchanov, D.; Koucheryavy, Y. Terahertz band communications: Applications, research challenges, and standardization activities. In Proceedings of the 2016 IEEE 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Lisbon, Portugal, 18–20 October 2016; pp. 183–190. [Google Scholar]
- Koenig, S.; Lopez-Diaz, D.; Antes, J.; Boes, F.; Henneberger, R.; Leuther, A.; Tessmann, A.; Schmogrow, R.; Hillerkuss, D.; Palmer, R. Wireless sub-THz communication system with high data rate. Nat. Photonics 2013, 7, 977–981. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; MacCartney, G.R.; Molisch, A.F.; Mellios, E.; Zhang, J. Overview of millimeter wave communications for fifth-generation (5G) wireless networks—With a focus on propagation models. IEEE Trans. Antennas Propag. 2017, 65, 6213–6230. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Morris, M.J.; Walters, R.A.; Burke, G.C. Miniature optical-fiber-based spectrometer employing a compact tandem fiber probe. In Proceedings of the 1993 SPIE Chemical, Biochemical, and Environmental Fiber Sensors IV, Boston, MI, USA, 30 April 1993; pp. 141–149. [Google Scholar]
- Supreet; Singh, G. Recent advances on cadmium free quantum dots-liquid crystal nanocomposites. Appl. Mater. Today 2020, 21, 100840. [Google Scholar] [CrossRef]
- Hwang, D.K.; Rey, A.D. Computational studies of optical textures of twist disclination loops in liquid-crystal films by using the finite-difference time-domain method. J. Opt. Soc. Am. A 2006, 23, 483–496. [Google Scholar] [CrossRef]
- Wu, P.-C.; Lee, W. Tunable and memorable optical devices with one-dimensional photonic-crystal/liquid-crystal hybrid structures. In Optical Devices in Communcation and Computation; Intech: Rijeka, Croatia, 2012; Chapter 4; pp. 55–80. [Google Scholar]
- Khoo, I.-C. Liquid Crystals, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 125–127. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics; Macmillan: New York, NY, USA, 1980; Chapter 8.6. [Google Scholar]
- Li, J.; Wu, S.-T. Extended Cauchy equations for the refractive indices of liquid crystals. J. Appl. Phys. 2004, 95, 896–901. [Google Scholar] [CrossRef]
- Yang, D.-K.; Wu, S.-T. Fundamentals of Liquid Crystal Devices; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 158–159. [Google Scholar]
- Tkachenko, V.; Abbate, G.; Marino, A.; Vita, F.; Giocondo, M.; Mazzulla, A.; Ciuchi, F.; De Stefano, L. Nematic liquid crystal optical dispersion in the visible-near infrared range. Mol. Cryst. Liq. Cryst. 2006, 454, 263/[665]–271/[673]. [Google Scholar] [CrossRef]
- Li, J.; Baird, G.; Lin, Y.H.; Ren, H.; Wu, S.T. Refractive-index matching between liquid crystals and photopolymers. J. Soc. Inf. Disp. 2005, 13, 1017–1026. [Google Scholar] [CrossRef]
Cell Gap (μm) | Defect-Mode Wavelengths (1250 nm < λ < 1650 nm) and the Order Numbers | ||||||
---|---|---|---|---|---|---|---|
Peak 1 (nm) | Peak 2 (nm) | Peak 3 (nm) | Peak 4 (nm) | Peak 5 (nm) | Peak 6 (nm) | Number of Peaks | |
9.0 | 1265 [24] | 1321 [23] | 1382 [22] | 1449 [21] | 1523 [20] | 1605 [19] | 6 |
8.0 | 1303 [21] | 1369 [20] | 1442 [19] | 1524 [18] | 1616 [17] | 5 | |
7.0 | 1281 [19] | 1353 [18] | 1435 [17] | 1527 [16] | 1631 [15] | 5 | |
6.0 | 1254 [17] | 1334 [16] | 1429 [15] | 1530 [14] | 4 | ||
5.0 | 1309 [13] | 1413 [12] | 1534 [11] | 3 | |||
4.6 | 1316 [12] | 1430 [11] | 1565 [10] | 3 | |||
4.0 | 1273 [11] | 1395 [10] | 1540 [9] | 3 | |||
3.0 | 1369 [7] | 1548 [6] | 2 |
Voltage (Vrms) | Defect-Mode Wavelength Shifts (nm) | |||
---|---|---|---|---|
e13 | e12 | e11 | e10 | |
0 | 0 | 0 | 0 | 0 |
0.5 | 0.47 | 0.53 | 1.04 | 1.35 |
1 | 2.69 | 3.11 | 4.08 | 4.64 |
1.5 | 21.87 | 25.01 | 27.38 | 29.51 |
2 | 42.39 | 47.78 | 54.59 | 57.06 |
3 | 68.96 | 77.08 | 82.02 | 100.38 |
6 | 85.74 | 95.12 | 104.43 | 116.66 |
9 | 90.23 | 103.21 | 108.92 | 124.02 |
15 | 94.47 | 109.43 | 113.29 | 125.11 |
25 | 97.39 | 111.66 | 118.18 | 128.99 |
40 | 98.73 | 115.72 | 123.05 | 139.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, G.-F.; Chiu, S.-Y.; Chang, Y.-C.; Liou, Y.-C.; Yeh, C.-P.; Lee, W. Electrically Tunable Defect-Mode Wavelengths in a Liquid-Crystal-in-Cavity Hybrid Structure in the Near-Infrared Range. Materials 2023, 16, 3229. https://doi.org/10.3390/ma16083229
Sung G-F, Chiu S-Y, Chang Y-C, Liou Y-C, Yeh C-P, Lee W. Electrically Tunable Defect-Mode Wavelengths in a Liquid-Crystal-in-Cavity Hybrid Structure in the Near-Infrared Range. Materials. 2023; 16(8):3229. https://doi.org/10.3390/ma16083229
Chicago/Turabian StyleSung, Guan-Fu, Shun-Yi Chiu, Yi-Cheng Chang, Yu-Chen Liou, Chin-Pin Yeh, and Wei Lee. 2023. "Electrically Tunable Defect-Mode Wavelengths in a Liquid-Crystal-in-Cavity Hybrid Structure in the Near-Infrared Range" Materials 16, no. 8: 3229. https://doi.org/10.3390/ma16083229
APA StyleSung, G. -F., Chiu, S. -Y., Chang, Y. -C., Liou, Y. -C., Yeh, C. -P., & Lee, W. (2023). Electrically Tunable Defect-Mode Wavelengths in a Liquid-Crystal-in-Cavity Hybrid Structure in the Near-Infrared Range. Materials, 16(8), 3229. https://doi.org/10.3390/ma16083229