An Electrochemical Sensor for the Determination of Trace Concentrations of Cadmium, Based on Spherical Glassy Carbon and Nanotubes
Abstract
:1. Introduction
2. Materials and Experimental Work
2.1. Chemicals
2.2. Apparatus
2.3. CNTs/SGC Electrode Fabrication
2.4. Certified Reference Materials and River Water Sample Preparation
2.5. Electrochemical Analysis Procedure
2.6. Stability, Repeatability and Reproducibility
3. Results and Discussion
3.1. Characteristics of CNTs/SGC Electrode
3.2. Studies of the Optimal Solution Composition
3.3. Studies of Accumulation Potential and Time
3.4. Selectivity
3.5. Analytical Features
3.6. Application of the Elaborated Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Genchi, G.; Sinicropi, M.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Health Res. 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Riaz, U.; Aslam, A.; Zaman, Q.; Javeid, S.; Gul, R.; Iqbal, S.; Javid, S.; Murtaza, G.; Jamil, M. Cadmium contamination, bioavailability, uptake mechanism and remediation strategies in soil-plant-environment system: A critical review. Curr. Anal. Chem. 2020, 17, 49–60. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Koper, A. Direct determination of cadmium traces in natural water by adsorptive stripping voltammetry in the presence of cupferron as a chelating agent. Electroanalysis 2012, 24, 33–36. [Google Scholar] [CrossRef]
- Khairy, M.; El-Safty, S.A.; Shenashen, M.A. Environmental remediation and monitoring of cadmium. TrAC Trends Anal. Chem. 2014, 62, 56–68. [Google Scholar] [CrossRef]
- Waalkes, M.P. Cadmium carcinogenesis in review. J. Inorg. Biochem. 2000, 79, 241–244. [Google Scholar] [CrossRef]
- Bouida, L.; Mohd Rafatullah, M.; Kerrouche, A.; Qutob, M.; Alosaimi, A.M.; Alorfi, H.S.; Hussein, M.A. A Review on Cadmium and Lead Contamination: Sources, Fate, Mechanism, Health Effects and Remediation Methods. Water 2022, 14, 3432. [Google Scholar] [CrossRef]
- Satarug, S.; Baker, J.R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P.E.B.; Williams, D.J.; Moore, M.R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003, 137, 65–83. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, P. Cadmium, occurrence, pollution sources and recycling methods. Miner. Resour. Manag. 2008, 24, 255–260. [Google Scholar]
- Zittel, H.E.; Miller, F.J. A glassy-carbon electrode for voltammetry. Anal. Chem. 1965, 37, 200–203. [Google Scholar] [CrossRef]
- Sharma, S. Glassy carbon: A promising material for micro- and nanomanufacturing. Materials 2018, 11, 1857. [Google Scholar] [CrossRef]
- Rana, A.; Baig, N.; Saleh, T.A. Electrochemically pretreated carbon electrodes and their electroanalytical applications—A review. J. Electroanal. Chem. 2019, 833, 313–332. [Google Scholar] [CrossRef]
- Stozhko, N.Y.; Malakhova, N.A.; Fyodorov, M.V.; Brainina, K.Z. Modified carbon-containing electrodes in stripping voltammetry of metals. J. Solid State Electrochem. 2008, 12, 1185–1204. [Google Scholar] [CrossRef]
- Adamczyk, M.; Grabarczyk, M.; Wlazłowska, E. Fast and simple different pulse adsorptive stripping voltammetric determination of Ce(III) in natural water samples. Desalinatin Water Treat. 2022, 264, 188–195. [Google Scholar] [CrossRef]
- Łysoń, M.; Górska, A.; Paczosa-Bator, B.; Piech, R. Nimesulide determination on carbon black-nafion modified glassy carbon electrode by means of adsorptive stripping voltammetry. Electrocatalysis 2021, 12, 641–649. [Google Scholar] [CrossRef]
- Bobrowski, A.; Królicka, A.; Zarebski, J. Morphology and electrochemical properties of the bismuth film electrode ex situ electrochemically plated from perchloric acid. Electroanalysis 2010, 22, 1421–1427. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Wasąg, J. Determination of trace amounts of Ga(III) by adsorptive stripping voltammetry with in situ plated bismuth film electrode. Talanta 2015, 144, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- Wasąg, J.; Grabarczyk, M. Adsorptive stripping voltammetry of In(III) in the presence of cupferron using an in situ plated bismuth film electrode. Anal. Methods 2016, 8, 3605–3612. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Adamczyk, M. Bismuth film electrode and chloranilic acid as a new alternative for simple, fast and sensitive Ge(IV) quantification by adsorptive stripping voltammetry. RSC Adv. 2018, 8, 15215–15221. [Google Scholar] [CrossRef] [PubMed]
- Kozak, J.; Tyszczuk-Rotko, K.; Rotko, M. Voltammetric screen-printed carbon sensor modified with multiwalled carbon nanotubes and bismuth film for trace analysis of thallium(I). Physicochem. Probl. Miner. Process. 2019, 55, 1422–1428. [Google Scholar]
- Tyszczuk-Rotko, K.; Madejska, K.; Domańska, K. Ultrasensitive hexavalent chromium determination at bismuth film electrode prepared with mediator. Talanta 2018, 182, 62–68. [Google Scholar] [CrossRef]
- Kefala, G.; Economou, A.; Voulgaropoulos, A.; Sofoniou, M. A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta 2003, 61, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Hutton, E.A.; van Elteren, J.T.; Ogorevc, B.; Smyth, M.R. Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP–MS. Talanta 2004, 63, 849–855. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, L.M.; do Nascimento, P.C.; Koschinsky, A.; Bau, M.; Stefanello, R.F.; Spengler, C.; Bohrer, D.; Jost, C. Simultaneous determination of cadmium, lead, copper, and thallium in highly saline samples by anodic stripping voltammetry (ASV) using mercury-film and bismuth-film electrodes. Electroanalysis 2007, 19, 1719–1726. [Google Scholar] [CrossRef]
- Armstrong, K.C.; Tatum, C.E.; Dansby-Sparks, R.N.; Chambers, J.Q.; Xue, Z.L. Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. Talanta 2010, 82, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Z.; Yao, G.; Zhu, P.; Hu, X.; Xu, Q.; Yang, C. Determination of cadmium with a sequential injection lab-on-valve by anodic stripping voltammetry using a nafion coated bismuth film electrode. Talanta 2010, 80, 1959–1963. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadou, Z.D.; Sipaki, I.; Jannakoudakis, P.D.; Girousi, S.T. Square-wave anodic stripping voltammetry (swasv) for the determination of ecotoxic metals, using a bismuth-film electrode. Anal. Lett. 2011, 44, 761–777. [Google Scholar] [CrossRef]
- Rosolina, S.M.; Chambers, J.Q.; Lee, C.W.; Xue, Z.L. Direct determination of cadmium and lead in pharmaceutical ingredients using anodic stripping voltammetry in aqueous and DMSO/water solutions. Anal. Chim. Acta 2015, 893, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Domańska, K.; Tyszczuk-Rotko, K.; Dąbal, S. The simultaneous voltammetry determination of cadmium(II) and lead(II) at bismuth film glassy carbon electode prepared with the use of mediator. Ann. Univ. Mariae Curie-Sklodowska Sect. AA 2017, 72, 1. [Google Scholar] [CrossRef]
- Bu, L.; Xie, Q.; Ming, H. Simultaneous sensitive analysis of Cd(II), Pb(II) and As(III) using a dual-channel anodic stripping voltammetry approach. New J. Chem. 2020, 44, 5739–5745. [Google Scholar] [CrossRef]
- Rojas-Romo, C.; Aliaga, M.E.; Arancibia, V.; Gomez, M. Determination of Pb(II) and Cd(II) via anodic stripping voltammetry using an in-situ bismuth film electrode. Increasing the sensitivity of the method by the presence of Alizarin Red S. Microchem. J. 2020, 159, 105373. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Sun, J.; Wang, C.; Zhu, G.; Bai, L.P.; Jiang, Z.H.; Zhang, W. Stripping voltammetric determination of cadmium and lead ions based on a bismuth oxide surface-decorated nanoporous bismuth electrode. Electrochem. Commun. 2022, 136, 107233. [Google Scholar] [CrossRef]
- Thanh, N.M.; Luyen, N.D.; Thanh Tam Toan, T.; Hai Phong, N.; van Hop, N. Voltammetry determination of Pb(II), Cd(II), and Zn(II) at bismuth film electrode combined with 8-hydroxyquinoline as a complexing agent. J. Anal. Methods Chem. 2019, 2019, 4593135. [Google Scholar] [CrossRef] [PubMed]
- Nemcova, L.; Barek, J.; Zima, J. A voltammetric comparison of the properties of carbon paste electrodes containing glassy carbon microparticles of various sizes. J. Electroanal. Chem. 2012, 675, 18–24. [Google Scholar] [CrossRef]
- Kava, A.A.; Beardsley, C.; Hofstetter, J.; Henry, C.S. Disposable glassy carbon stencil printed electrodes for trace detection of cadmium and lead. Anal. Chim. Acta 2020, 1103, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Barek, J.; Muck, A.; Wang, J.; Zima, J. Study of voltammetric determination of carcinogenic 1-nitropyrene and 1-aminopyrene using a glassy carbon paste electrode. Sensors 2004, 4, 47–57. [Google Scholar] [CrossRef]
- Ibrahim, M.; Temerk, Y.; Ibrahim, H. (2017) Fabrication of a new biosensor based on a Sn doped ceria nanoparticle modified glassy carbon paste electrode for the selective determination of the anticancer drug dacarbazine in pharmaceuticals. RSC Adv. 2017, 7, 32357–32366. [Google Scholar] [CrossRef]
- Britto, P.J.; Santhanam, K.S.V.; Ajayan, P.M. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg. 1996, 41, 121–125. [Google Scholar] [CrossRef]
- Kaliyaraj Selva Kumar, A.; Lu, Y.; Compton, R.G. Voltammetry of carbon nanotubes and the limitations of particle-modified electrodes: Are carbon nanotubes electrocatalytic? J. Phys. Chem. Lett. 2022, 13, 8699–8710. [Google Scholar] [CrossRef]
- Wang, T.; Yue, W. Carbon nanotubes heavy metal detection with stripping voltammetry: A review paper. Electroanalysis 2017, 29, 2178–2189. [Google Scholar] [CrossRef]
- Ahammad, A.J.S.; Lee, J.J.; Rahman, M.A. Electrochemical sensors based on carbon nanotubes. Sensors 2009, 9, 2289–2319. [Google Scholar] [CrossRef]
- Zeng, B.; Wei, S.; Xiao, F.; Zhao, F. Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode. Sens. Actuators B Chem. 2006, 115, 240–246. [Google Scholar] [CrossRef]
- Malinowski, S.; Wardak, C.; Pietrzak, K. Effect of multi-walled carbon nanotubes on analytical parameters of laccase-based biosensors received by soft plasma polymerization technique. IEEE Sens. J. 2020, 20, 8423–8428. [Google Scholar] [CrossRef]
- Wardak, C.; Paczosa-Bator, B.; Malinowski, S. Application of cold plasma corona discharge in preparation of laccase-based biosensors for dopamine determination. Mater. Sci. Eng. C 2020, 116, 111199. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, M.; Grabarczyk, M.; Leszko, W. A voltammetric approach to the quantification of tungsten in environmental waters using a solid bismuth microelectrode. Measurement 2022, 194, 111089. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Wlazlowska, E. An activated bismuth layer formed in situ on a solid bismuth microelectrode for electrochemical sensitive determination of Ga(III). Membranes 2022, 12, 1267. [Google Scholar] [CrossRef]
- Palisoc, S.T.; Chua, R.V.M.; Natividad, M.T. Highly sensitive determination of heavy metals in upland and lowland rice using AgNP/BiNP/MWCNT/nafion modified glassy carbon electrode via anodic stripping voltammetry. Mater. Res. Express 2020, 7, 15081. [Google Scholar] [CrossRef]
- Mohammadia, S.; Tahera, M.A.; Beitollahic, H.; Naghizadeha, M. Sensitive voltammetric determination of cadmium at a carbon nanotubes/Fe3O4/eggshell composites modified carbon paste electrode. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100241. [Google Scholar] [CrossRef]
- Knihnicki, P.; Skrzypek, A.; Jakubowska, M.; Porada, R.; Rokicinska, A.; Kustrowski, P.; Koscielniak, P.; Kochana, J. Electrochemical Sensing of Pb2+ and Cd2+ Ions with the Use of Electrode Modified with Carbon-Covered Halloysite and Carbon Nanotubes. Molecules 2022, 27, 4608. [Google Scholar] [CrossRef]
- Palisoc, S.; Vitto, R.I.M.; Nativdad, M. Determination of Heavy Metals in Herbal food Supplements using Bismuth/Multi-walled carbon Nanotubes/Nafion modified Graphite electrodes sourced from Waste Batteries. Sci. Rep. 2019, 9, 18491. [Google Scholar] [CrossRef]
- Xie, R.; Zhou, L.; Lan, C.; Fan, F.; Xie, R.; Tan, H.; Xie, T.; Zhao, L. Nanostructured carbon black for simultaneous electrochemical determination of trace lead and cadmium by differential pulse stripping voltammetry. R. Soc. Open Sci. 2018, 5, 180282. [Google Scholar] [CrossRef]
- Wu, K.; Hu, S.; Fei, J.; Bai, W. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes. Anal. Chim. Acta 2003, 489, 215–221. [Google Scholar] [CrossRef]
- Pan, D.; Wang, Y.; Chen, Z.; Yin, T.; Qin, W. Fabrication and Characterization of Carbon Nanotube-Hydroxyapatite Nanocomposite: Application to Anodic Stripping Voltammetric Determination of Cadmium. Electroanaysis 2009, 21, 944–952. [Google Scholar] [CrossRef]
- Sun, D.; Xie, X.; Cai, Y.; Zhang, C.; Wu, K. Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion fil. Anal. Chim. Acta 2007, 581, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.P.; Trinh, X.G.; Uyen, D.T.T. Using Electrode Made of Carbon Nanotubes and Bismuth Oxide for the Determination of Metal Concentration by Anodic Stripping Voltammetry. J. Chem. 2019, 2019, 6170967. [Google Scholar] [CrossRef]
Modyfication Electrode Materials | Detection Limit (nmol L−1) | Accumulation Potential/Accumulation Time | Linearity Range (nmol L−1) | Ref. |
---|---|---|---|---|
carbon nanotubes/silver nanoparticles/bismuth nanomarticles | 220 | -/60 s | 176–880 | [46] |
carbon nanotubes/Fe3O4/eggshell | 21 | −0.9 V/500 s | 27–2222 | [47] |
carbon nanotubes/carbon natural halloysite | 10.6 | −1.2 V/90 s | 100–10,000 | [48] |
carbon nanotubes/bismuth nanoparticles | 9.4 | −0.86 V/105 s | 44–8889 | [49] |
carbon black | 8 | −1.1 V/300 s | 6–1000 | [50] |
carbon nanotubes | 6 | −1.2 V/300 s | 250–10,000 | [51] |
carbon nanotube/hydroxyapatite nanocomposite | 4 | −1.2 V/300 s | 20–3000 | [52] |
carbon nanotubes | 4 | −1.1 V/300 s | 40–4000 | [53] |
carbon nanotubes/bismuth oxide | 1.96 | −1.2 V/120 s | 13–178 | [54] |
carbon nanotubes/spherical glassy carbon powder | 0.62 | −2 V/3 s−0.9 V/50 s | 2–200 | this work |
Name | Material Type | Certified Cadmium Content (ng mL−1) | Cadmium Content Found (ng mL−1) | Recovery (%) | RSD (n = 3) (%) |
---|---|---|---|---|---|
TM-25.5 | environmental matrix—solution | 24.0 | 22.1 | 92.1 | 6.1 |
SPS-WW1 | waste water | 20.0 | 19.2 | 96.0 | 5.7 |
Sample | Cadmium Added (nmol L−1) | Cadmium Found (ng mL−1) | Recovery (%) | RSD (n = 3) (%) |
---|---|---|---|---|
Bystrzyca River | 20.0 | 21.1 | 105.5 | 6.2 |
40.0 | 41.8 | 104.5 | 5.5 | |
Bychawka River | 20.0 | 19.2 | 96.0 | 5.7 |
40.0 | 40.8 | 102.0 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabarczyk, M.; Wardak, C.; Piech, R.; Wawruch, A. An Electrochemical Sensor for the Determination of Trace Concentrations of Cadmium, Based on Spherical Glassy Carbon and Nanotubes. Materials 2023, 16, 3252. https://doi.org/10.3390/ma16083252
Grabarczyk M, Wardak C, Piech R, Wawruch A. An Electrochemical Sensor for the Determination of Trace Concentrations of Cadmium, Based on Spherical Glassy Carbon and Nanotubes. Materials. 2023; 16(8):3252. https://doi.org/10.3390/ma16083252
Chicago/Turabian StyleGrabarczyk, Malgorzata, Cecylia Wardak, Robert Piech, and Agnieszka Wawruch. 2023. "An Electrochemical Sensor for the Determination of Trace Concentrations of Cadmium, Based on Spherical Glassy Carbon and Nanotubes" Materials 16, no. 8: 3252. https://doi.org/10.3390/ma16083252
APA StyleGrabarczyk, M., Wardak, C., Piech, R., & Wawruch, A. (2023). An Electrochemical Sensor for the Determination of Trace Concentrations of Cadmium, Based on Spherical Glassy Carbon and Nanotubes. Materials, 16(8), 3252. https://doi.org/10.3390/ma16083252