Combined Effect of Ceramic Waste Powder Additives and PVA on the Structure and Properties of Geopolymer Concrete Used for Finishing Facades of Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- -
- dosing of all raw materials
- -
- mixing of metakaolin, PCW, and sand
- -
- introduction of an alkaline activator, liquid PVA into the resulting mixture and stirring the resulting mixture for 5 min
- -
- filling of metal molds with geopolymer mixture
- -
- vibrating the mixture in the molds for 10 s to remove unwanted air bubbles
- -
- covering the forms with polyethylene film to protect against water evaporation for 24 h
- -
- extraction of geopolymer concrete samples from molds after 24 h and storage for 27 days in plastic bags.
3. Results
3.1. Particle Distribution Study of Metakaolin and PCW
3.2. Study of the Influence of PCW and PVA on the Strength Characteristics of Geopolymer Composites
3.3. Study of the Effect of PCW and PVA on the Water Absorption of Geopolymer Composites
3.4. Study of the Effect of PCW and PVA on the Adhesion of Geopolymer Composites
3.5. Analysis of the Microstructure of Geopolymer Concrete with the Addition of PCW and PVA
4. Discussion
5. Conclusions
- (1)
- The most optimal dosages of PCW and PVA additives have been established, at which geopolymer concretes have the best physical, mechanical, and structural characteristics: 20% PCW introduced into the geopolymer instead of a part of metakaolin, and 6% PVA.
- (2)
- The combined use of PCW and PVA additives in optimal dosages provides the maximum increase in strength and physical characteristics. Compressive strength increased by up to 18%, bending strength up to 17%, water absorption of geopolymer concretes decreased by up to 54%, and adhesion increased by up to 9%. The increase in strength is due to the good dispersion of PCW in the geopolymer composite and thus the creation of barriers against crack growth. The addition of PVA also contributes to a more compact and homogeneous structure of the composite with a reduced number of voids compared to the control composition of the geopolymer. The adhesion of the modified geopolymer composite is slightly better with a concrete base than with a ceramic one (up to 5%) due to the more developed rough surface of the first one in comparison with a smooth ceramic one.
- (3)
- Geopolymer concretes modified with PCW and PVA additives have a denser structure with fewer pores and microcracks due to the presence of PCW brought to the state of a fine powder, playing the role of a micromodifier, which contributes to the creation of additional crystallization centers, as a result of which structure formation improves and occurs.
- (4)
- The application of PCW in combination with a cementless binder provides environmental savings of up to 17% compared to existing cement-based formulations, estimated based on rough feedback from industry partners and data on the disposal of broken bricks generated during construction.
- (5)
- Improving the structure at the micro- and macrolevels, as well as the physical-mechanical and adhesive properties with a developed surface of new geopolymer concretes, allow us to offer the developed compositions for practical work on the restoration of the facades of buildings and structures, including those operated in difficult conditions due to improved quality indicators.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, K.; Ahmad, W.; Amin, M.N.; Nazar, S. A Scientometric-Analysis-Based Review of the Research Development on Geopolymers. Polymers 2022, 14, 3676. [Google Scholar] [CrossRef] [PubMed]
- Castillo, H.; Collado, H.; Droguett, T.; Vesely, M.; Garrido, P.; Palma, S. State of the art of geopolymers: A review. e-Polymers 2022, 22, 108–124. [Google Scholar] [CrossRef]
- Dollente, I.J.R.; Valerio, D.N.R.; Quiatchon, P.R.J.; Abulencia, A.B.; Villoria, M.B.D.; Garciano, L.E.O.; Promentilla, M.A.B.; Guades, E.J.; Ongpeng, J.M.C. Enhancing the Mechanical Properties of Historical Masonry Using Fiber-Reinforced Geopolymers. Polymers 2023, 15, 1017. [Google Scholar] [CrossRef] [PubMed]
- Aliabdo, A.A.; Elmoaty, A.E.M.A.; Emam, M.A. Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Constr. Build. Mater. 2019, 197, 339–355. [Google Scholar] [CrossRef]
- McCaffrey, R. Climate change and the cement industry. Glob. Cem. Lime Mag. (Environ. Spec. Issue) 2002, 15, 19. Available online: https://thegreencaiman.files.wordpress.com/2016/03/climate_change_and_the_cement_industry.pdf (accessed on 17 March 2023).
- WMO. Greenhouse Gas. Bulletin: The State of the Greenhouse Gases in the Atmosphere Based on Global Observations through 2018. Weather Clim. Water 2019, 15, 191536. Available online: https://library.wmo.int/doc_num.php?explnum_id=10100 (accessed on 17 March 2023).
- Rashad, A.M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag–A guide for civil engineer. Constr. Build. Mater. 2013, 47, 29–55. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Ceramic-Like Inorganic Polymers. J. Ceram. Sci. Technol. 2017, 8, 335. [Google Scholar] [CrossRef]
- Huseien, G.F.; Kubba, Z.; Mhaya, A.M.; Malik, N.H.; Mirza, J. Impact Resistance Enhancement of Sustainable Geopolymer Composites Using High Volume Tile Ceramic Wastes. J. Compos. Sci. 2023, 7, 73. [Google Scholar] [CrossRef]
- Dal Poggetto, G.; D’Angelo, A.; Catauro, M.; Barbieri, L.; Leonelli, C. Recycling of Waste Corundum Abrasive Powder in MK-Based Geopolymers. Polymers 2022, 14, 2173. [Google Scholar] [CrossRef]
- Azad, N.M.; Samarakoon, S.M.S.M.K. Utilization of Industrial By-Products/Waste to Manufacture Geopolymer Cement/Concrete. Sustainability 2021, 13, 873. [Google Scholar] [CrossRef]
- Bhikshma, V.; Koti, R.M.; Srinivas, R.T. An experimental investigation on properties of geopolymer concrete (no cement concrete). Asian J. Civ. Eng. (Build. Hous.) 2012, 13, 841–853. Available online: https://www.semanticscholar.org/paper/AN-EXPERIMENTAL-INVESTIGATION-ON-PROPERTIES-OF-(NO-Bhikshma-Reddy/895edbe2306139f7331e3db2be25dceb5d9b1521?sort=relevance&pdf=true (accessed on 17 March 2023).
- Bhina, M.R.; Liu, K.-Y.; Hu, J.-E.H.-Y.; Tsai, C.-T. Investigation of the Mechanical Properties of Quick-Strength Geopolymer Material Considering Preheated-to-Room Temperature Ratio of Sand, Na2SiO3-to-NaOH Ratio, and Fly Ash-to-GGBS Ratio. Polymers 2023, 15, 1084. [Google Scholar] [CrossRef] [PubMed]
- Alyousef, R.; Ebid, A.A.K.; Huseien, G.F.; Mohammadhosseini, H.; Alabduljabbar, H.; Poi Ngian, S.; Mohamed, A.M. Effects of Sulfate and Sulfuric Acid on Efficiency of Geopolymers as Concrete Repair Materials. Gels 2022, 8, 53. [Google Scholar] [CrossRef]
- Ozga, I.; Ghedini, N.; Giosuè, C.; Sabbioni, C.; Tittarelli, F.; Bonazza, A. Assessment of air pollutant sources in the deposit on monuments by multivariate analysis. Sci. Total Environ. 2014, 490, 776–784. [Google Scholar] [CrossRef]
- Feng, B.; Liu, J. Durability of Repair Metakaolin Geopolymeric Cement under Different Factors. Processes 2022, 10, 1818. [Google Scholar] [CrossRef]
- Hanzlícek, T.; Steinerová, M.; Straka, P.; Perná, I.; Siegl, P.; Švarcová, T. Reinforcement of the terracotta sculpture by geopolymer composite. Mater. Des. 2009, 30, 3229–3234. [Google Scholar] [CrossRef]
- Eken, E.; Tascı, B.; Gustafsson, C. An evaluation of decision-making process on maintenance of built cultural heritage: The case of Visby, Sweden. Cities 2019, 94, 24–32. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; El’shaeva, D.; Kotenko, M. The Investigation of Compacting Cement Systems for Studying the Fundamental Process of Cement Gel Formation. Gels 2022, 8, 530. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D.; Sičáková, A.; Kim, N. Utilization of Different Forms of Demolished Clay Brick and Granite Wastes for Better Performance in Cement Composites. Buildings 2023, 13, 165. [Google Scholar] [CrossRef]
- Provis, J.L. Green concrete or red herring?—Future of alkali-activated materials. Adv. Appl. Ceram. 2014, 113, 472–477. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Pang, E. Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin. Materials 2022, 15, 3732. [Google Scholar] [CrossRef] [PubMed]
- Jihui, Z. Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment. J. Clean. Prod. 2021, 307, 127085. [Google Scholar] [CrossRef]
- Occhicone, A.; Vukčević, M.; Bosković, I.; Mingione, S.; Ferone, C. Alkali-Activated Red Mud and Construction and Demolition Waste-Based Components: Characterization and Environmental Assessment. Materials 2022, 15, 1617. [Google Scholar] [CrossRef] [PubMed]
- Korniejenko, K.; Łach, M.; Mikuła, J. The Influence of Short Coir, Glass and Carbon Fibers on the Properties of Composites with Geopolymer Matrix. Materials 2021, 14, 4599. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Torgal, F.; Jalali, S. Retraction Note: Compressive strength and durability properties of ceramic wastes based concrete. Mater. Struct. 2021, 54, 153. [Google Scholar] [CrossRef]
- Silva, T.H.; de Resende, M.C.; de Resende, D.S.; Ribeiro Soares, P.R., Jr.; da Silva Bezerra, A.C. Valorization of ceramic sludge waste as alternative flux: A way to clean production in the sanitary ware industry. Clean. Eng. Technol. 2022, 7, 100453. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S.; Abdullah, M.M.A.B.; Nabiałek, M.; Sandu, A.V.; Szmidla, J.; Jurczyńska, A.; Razak, R.A.; Aziz, I.H.A.; Jamil, N.H.; et al. Assessment of the Suitability of Ceramic Waste in Geopolymer Composites: An Appraisal. Materials 2021, 14, 3279. [Google Scholar] [CrossRef]
- Ramos, G.A.; de Matos, P.R.; Pelisser, F.; Gleize, P.J.P. Effect of porcelain tile polishing residue on eco-efficient geopolymer: Rheological performance of pastes and mortars. J. Build. Eng. 2020, 32, 101699. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Magbool, H.M.; Tayeh, B.A.; de Azevedo AR, G.; Abutaleb, A.; Hussain, Q. Production of geopolymer concrete by utilizing volcanic pumice dust. Case Stud. Constr. Mater. 2022, 16, e00802. [Google Scholar] [CrossRef]
- Nasaeng, P.; Wongsa, A.; Cheerarot, R.; Sata, V.; Chindaprasirt, P. Strength enhancement of pumice-based geopolymer paste by incorporating recycled concrete and calcined oyster shell powders. Case Stud. Constr. Mater. 2022, 17, e01307. [Google Scholar] [CrossRef]
- Occhicone, A.; Vukčević, M.; Bosković, I.; Ferone, C. Red mud-blast furnace slag-based alkali-activated materials. Sustainability 2021, 13, 11298. [Google Scholar] [CrossRef]
- Roviello, G.; Ricciotti, L.; Molino, A.J.; Menna, C.; Ferone, C.; Asprone, D.; Cioffi, R.; Ferrandiz-Mas, V.; Russo, P.; Tarallo, O. Hybrid fly ash-based geopolymeric foams: Microstructural, thermal and mechanical properties. Materials 2020, 13, 2919. [Google Scholar] [CrossRef] [PubMed]
- Botti, R.F.; Innocentini, M.D.M.; Faleiros, T.A.; Mello, M.F.; Flumignan, D.L.; Santos, L.K.; Franchin, G.; Colombo, P. Biodiesel Processing Using Sodium and Potassium Geopolymer Powders as Heterogeneous Catalysts. Molecules 2020, 25, 2839. [Google Scholar] [CrossRef] [PubMed]
- Kozhukhova, N.I.; Fomina, E.V.; Zhernovsky, I.V.; Strokova, V.V.; Chizhov, R.V. The Utilization Efficiency of Natural Alumosilicates in Composite Binders. Appl. Mech. Mater. 2014, 670–671, 182–186. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B. Increasing the Corrosion Resistance and Durability of Geopolymer Concrete Structures of Agricultural Buildings Operating in Specific Conditions of Aggressive Environments of Livestock Buildings. Appl. Sci. 2022, 12, 1655. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; El’shaeva, D.; Varavka, V. Developing Environmentally Sustainable and Cost-Effective Geopolymer Concrete with Improved Characteristics. Sustainability 2021, 13, 13607. [Google Scholar] [CrossRef]
- Han, W.; Lv, Y.; Wang, S.; Qiao, J.; Zou, C.; Su, M.; Peng, H. Effects of Al/Na and Si/Na Molar Ratios on the Alkalinity of Metakaolin-Based Geopolymer Pore Solutions. Materials 2023, 16, 1929. [Google Scholar] [CrossRef]
- Liu, X.; Liu, E.; Fu, Y. Reduction in Drying Shrinkage and Efflorescence of Recycled Brick and Concrete Fine Powder–Slag-Based Geopolymer. Appl. Sci. 2023, 13, 2997. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; El’shaeva, D. The Influence of Composition and Recipe Dosage on the Strength Characteristics of New Geopolymer Concrete with the Use of Stone Flour. Appl. Sci. 2022, 12, 613. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Varavka, V.; Beskopylny, N.; El’shaeva, D. A Study on the Cement Gel Formation Process during the Creation of Nanomodified High-Performance Concrete Based on Nanosilica. Gels 2022, 8, 346. [Google Scholar] [CrossRef] [PubMed]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; Zherebtsov, Y. Development of High-Tech Self-Compacting Concrete Mixtures Based on Nano-Modifiers of Various Types. Materials 2022, 15, 2739. [Google Scholar] [CrossRef] [PubMed]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Chernil’nik, A.; El’shaeva, D. Effect of Walnut-Shell Additive on the Structure and Characteristics of Concrete. Materials 2023, 16, 1752. [Google Scholar] [CrossRef] [PubMed]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Smolyanichenko, A.S.; Beskopylny, N. High-Performance Concrete Nanomodified with Recycled Rice Straw Biochar. Appl. Sci. 2022, 12, 5480. [Google Scholar] [CrossRef]
- Ricciotti, L.; Occhicone, A.; Ferone, C.; Cioffi, R.; Tarallo, O.; Roviello, G. Development of Geopolymer-Based Materials with Ceramic Waste for Artistic and Restoration Applications. Materials 2022, 15, 8600. [Google Scholar] [CrossRef]
- Moutinho, S.; Costa, C.; Andrejkovičová, S.; Mariz, L.; Sequeira, C.; Terroso, D.; Rocha, F.; Velosa, A. Assessment of properties of metakaolin-based geopolymers applied in the conservation of tile facades. Constr. Build. Mater. 2020, 259, 119759. [Google Scholar] [CrossRef]
- Gevaudan, J.P.; Wallat, J.D.; Lama, B.; Srubar, W.V. PVA- and PEG-assisted sol-gel synthesis of aluminosilicate precursors for N-A-S-H geopolymer cements. J. Am. Ceram. Soc. 2020, 103, 859–877. [Google Scholar] [CrossRef]
- Ricciotti, L.; Occhicone, A.; Manzi, S.; Saccani, A.; Ferone, C.; Tarallo, O.; Roviello, G. Sustainable Materials Based on Geopolymer–Polyvinyl Acetate Composites for Art and Design Applications. Polymers 2022, 14, 5461. [Google Scholar] [CrossRef]
- Ricciotti, L.; Molino, A.J.; Roviello, V.; Chianese, E.; Cennamo, P.; Roviello, G. Geopolymer Composites for Potential Applications in Cultural Heritage. Environments 2017, 4, 91. [Google Scholar] [CrossRef]
- GOST 30744–2020 CEMENTS. Methods of Testing with Using Polyfraction Standard Sand. Available online: https://docs.cntd.ru/document/1200011363 (accessed on 17 March 2023).
- GOST 12730.3–2020 Concretes. Method of Determination of Water Absorption. Available online: https://docs.cntd.ru/document/1200177301 (accessed on 17 March 2023).
- GOST R 58277–2018 Dry Building Mixes Based on Cement Binder. Test Methods. Available online: https://docs.cntd.ru/document/1200162143 (accessed on 17 March 2023).
- Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Mirza, J.; Tahir, M.M. Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Constr. Build. Mater. 2019, 210, 78–92. [Google Scholar] [CrossRef]
- Abadel, A.A.; Alghamdi, H. Effect of high volume tile ceramic wastes on resistance of geopolymer mortars to abrasion and freezing-thawing cycles: Experimental and deep learning modelling. Ceram. Int. 2023, 49, 15065–15081. [Google Scholar] [CrossRef]
Oxide | Content (%) |
---|---|
SiO2 | 53.79 |
Al2O3 | 40.03 |
Fe2O3 | 1.45 |
MgO | 0.34 |
CaO | 0.14 |
Na2O | 0.09 |
K2O | 0.69 |
TiO2 | 2.21 |
P2O5 | 0.05 |
LOI | 1.21 |
Residue on Sieves (%) | Sieves Diameter (mm) | Size Modulus | |||||
---|---|---|---|---|---|---|---|
2.5 | 1.25 | 0.63 | 0.315 | 0.16 | <0.16 | ||
Partial | 1.28 | 1.28 | 10.51 | 45.04 | 39.74 | 2.15 | 1.73 |
Full | 1.28 | 2.56 | 13.07 | 58.11 | 97.85 |
Bulk density (kg/m3) | 1578 |
True density (kg/m3) | 2675 |
The content of dust and clay particles (%) | 1.1 |
Clay content in lumps (%) | 0.15 |
Content of organic and contaminants | - |
Oxide | Content (%) |
---|---|
SiO2 | 49.2 |
Al2O3 | 20.3 |
CaO | 17.3 |
Fe2O3 | 4.4 |
K2O | 2.2 |
MgO | 1.5 |
Na2O | 1.4 |
TiO2 | 0.5 |
Others | 3.2 |
Sample Code | The Ratio of Alkaline Activator/ Binder | The Ratio of Binder/ Aggregate | Binder Metakaolin + PCW (%) | PVA Content (wt. % of Binder) |
---|---|---|---|---|
K | 0.5 | 1.5 | 100 + 0 | 3 |
1A | 0.5 | 1.5 | 95 + 5 | 3 |
2A | 0.5 | 1.5 | 90 + 10 | 3 |
3A | 0.5 | 1.5 | 85 + 15 | 3 |
4A | 0.5 | 1.5 | 80 + 20 | 3 |
5A | 0.5 | 1.5 | 75 + 25 | 3 |
6A | 0.5 | 1.5 | 70 + 30 | 3 |
7A | 0.5 | 1.5 | 95 + 5 | 6 |
8A | 0.5 | 1.5 | 90 + 10 | 6 |
9A | 0.5 | 1.5 | 85 + 15 | 6 |
10A | 0.5 | 1.5 | 80 + 20 | 6 |
11A | 0.5 | 1.5 | 75 + 25 | 6 |
12A | 0.5 | 1.5 | 70 + 30 | 6 |
13A | 0.5 | 1.5 | 95 + 5 | 9 |
14A | 0.5 | 1.5 | 90 + 10 | 9 |
15A | 0.5 | 1.5 | 85 + 15 | 9 |
16A | 0.5 | 1.5 | 80 + 20 | 9 |
17A | 0.5 | 1.5 | 75 + 25 | 9 |
18A | 0.5 | 1.5 | 70 + 30 | 9 |
Technological Operation | Equipment |
---|---|
Dosing and mixing of components | Laboratory concrete mixer BL-10 (ZZBO LLC, Russia, Chelyabinsk region, Zlatoust) |
Sample making | Laboratory vibration platform SMZh-539-220A (IMASH, Armavir, Russia) |
Sample Code | Compressive Strength Rb (MPa) | Flexural Strength Rbtb (MPa) |
---|---|---|
C | 18.7 | 2.70 |
1A/3 | 19.0 | 2.76 |
2A/3 | 19.5 | 2.81 |
3A/3 | 20.2 | 2.90 |
4A/3 | 21.2 | 3.06 |
5A/3 | 20.8 | 3.00 |
6A/3 | 20.4 | 2.95 |
1A/6 | 19.3 | 2.81 |
2A/6 | 20.0 | 2.89 |
3A/6 | 20.7 | 3.00 |
4A/6 | 22.0 | 3.16 |
5A/6 | 21.3 | 3.08 |
6A/6 | 20.9 | 3.02 |
1A/9 | 19.1 | 2.77 |
2A/9 | 19.7 | 2.84 |
3A/9 | 20.5 | 2.95 |
4A/9 | 21.5 | 3.09 |
5A/9 | 21.1 | 3.04 |
6A/9 | 20.7 | 2.98 |
Sample Code | Adhesion Strength with Concrete Base (Adhesion), MPa | Adhesion Strength with Ceramic Base (Adhesion) (MPa) |
---|---|---|
C | 0.548 | 0.460 |
1A/3 | 0.563 | 0.472 |
2A/3 | 0.573 | 0.479 |
3A/3 | 0.578 | 0.484 |
4A/3 | 0.583 | 0.489 |
5A/3 | 0.579 | 0.485 |
6A/3 | 0.572 | 0.482 |
1A/6 | 0.567 | 0.474 |
2A/6 | 0.576 | 0.482 |
3A/6 | 0.582 | 0.488 |
4A/6 | 0.593 | 0.496 |
5A/6 | 0.587 | 0.490 |
6A/6 | 0.578 | 0.487 |
1A/9 | 0.564 | 0.474 |
2A/9 | 0.574 | 0.481 |
3A/9 | 0.580 | 0.486 |
4A/9 | 0.587 | 0.492 |
5A/9 | 0.583 | 0.488 |
6A/9 | 0.575 | 0.484 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shcherban’, E.M.; Beskopylny, A.N.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Pimenova, E.; El’shaeva, D. Combined Effect of Ceramic Waste Powder Additives and PVA on the Structure and Properties of Geopolymer Concrete Used for Finishing Facades of Buildings. Materials 2023, 16, 3259. https://doi.org/10.3390/ma16083259
Shcherban’ EM, Beskopylny AN, Stel’makh SA, Mailyan LR, Meskhi B, Shilov AA, Pimenova E, El’shaeva D. Combined Effect of Ceramic Waste Powder Additives and PVA on the Structure and Properties of Geopolymer Concrete Used for Finishing Facades of Buildings. Materials. 2023; 16(8):3259. https://doi.org/10.3390/ma16083259
Chicago/Turabian StyleShcherban’, Evgenii M., Alexey N. Beskopylny, Sergey A. Stel’makh, Levon R. Mailyan, Besarion Meskhi, Alexandr A. Shilov, Elena Pimenova, and Diana El’shaeva. 2023. "Combined Effect of Ceramic Waste Powder Additives and PVA on the Structure and Properties of Geopolymer Concrete Used for Finishing Facades of Buildings" Materials 16, no. 8: 3259. https://doi.org/10.3390/ma16083259
APA StyleShcherban’, E. M., Beskopylny, A. N., Stel’makh, S. A., Mailyan, L. R., Meskhi, B., Shilov, A. A., Pimenova, E., & El’shaeva, D. (2023). Combined Effect of Ceramic Waste Powder Additives and PVA on the Structure and Properties of Geopolymer Concrete Used for Finishing Facades of Buildings. Materials, 16(8), 3259. https://doi.org/10.3390/ma16083259