Effect of Air Velocity and Initial Conditioning on the Moisture Buffer Value of Four Different Building Materials
Abstract
:1. Introduction
Materials | Apparent Density [kg/m3] | Thickness of Specimens [cm] | Air Velocity [m/s] | Initial Conditions | MBV [g/(m2.%RH)] | References |
---|---|---|---|---|---|---|
Gypsum | 1000 | 1.25–1.30 | 0.1 ± 0.05 | 23 °C; 50%RH | 0.63 | [2] |
Gypsum | 1200 | 2.00 | - | - | 0.51–0.72 | [12] |
Gypsum plaster | - | 10.00 3.00 1.00 0.50 | - | - | 0.94 0.91 0.43 0.22 | [21] |
Cellular concrete | 500 | 0.74–0.75 | 0.1 ± 0.05 | 23 °C; 50%RH | 1.04 | [2] |
Cellular concrete | 540 | 7.00–8.00 | Vertical velocity 0.07–0.14 and horizontal velocity: 0.1–0.4 | 23 °C; 50%RH | 1.14–1.42 | [4] |
Aerated cellular concrete | - | 10.00 3.00 1.00 0.50 | - | - | 0.81 0.82 0.61 0.33 | [21] |
Hemp concrete | 412 451 | 7.40–8.30 | Vertical velocity 0.07–0.14 and horizontal velocity: 0.1–0.4 | 23 °C; 50%RH | 2.08 2.22 | [4] |
Hemp concrete | 450 | 11.50 | - | 23 °C; 50%RH | 1.90 | [16] |
Hemp concrete | - | 5.00 | - | 23 °C; 50%RH | 3.05 | [19] |
Hempcrete | 290–310 | 5.50 | - | - | 2.78 | [20] |
Sprayed hemp concrete | 450 ± 20 | 10.00 | Not exceed 0.30 | Dried at 60 °C than stabilized at 23 °C; 50%RH | 2.30 | [35] |
Precast hemp concrete | 460 | 7.00–8.00 | Vertical velocity 0.07–0.14 and horizontal velocity: 0.1–0.4 | 23 °C; 50%RH | 1.94 | [5] |
Sprayed and molded hemp concrete | 430 | 7.00–8.00 | Vertical velocity 0.07–0.14 and horizontal velocity: 0.1–0.4 | 23 °C; 50%RH | 2.14–2.15 | [5] |
Moulded hemp concrete | 320 | 3.00 6.00 | - | - | 1.79 1.99 | [15] |
Lime hemp concrete | 400 | 7.50 | 0.10 | 55%RH | 2.36 | [17] |
Hemp lime concrete | 478 ± 7 | 3.00 5.00 7.00 | - | Dried at 60 °C | 1.84 1.86 2.02 | [3] |
Hemp lime | 290 | 12.00 | 0.15–0.20 | 23 °C; 50%RH | 3.47 | [23] |
Hemp starch composites | 170 210 | 2.50 | - | 23 °C; 50%RH | 2.52 3.49 | [11] |
Hemp straw composites | 166 188 | - | 0.1 to 0.4 for horizontal velocity and lower than 0.15 for vertical one | 23 °C; 50%RH | 2.20 2.42 | [10] |
Hemp composites with mineral or organic binder | = 250–500 = 500 = 460 | - | - | Dried at 60 °C, then stabilized at 23 °C; 50%RH | MBV PLA HC = 1.77 MBV prompt cement HC = 2.17 MBV lime based HC = 1.92 | [22] |
Hemp stabilized clay | 373 510 | 7.00 | Vertical velocity 0.07–0.14 and horizontal velocity: 0.1–0.4 | 23 °C; 50%RH | 2.24 2.33 | [18] |
Clay plaster | 1258 | 2.00 | 0.23–0.77 | 23 °C; 60%RH | 1.49–1.82 | [36] |
2. Methods and Materials
2.1. MBV Experimental Method and Device
2.1.1. Recommendations of NORDTEST Protocol
- MBV < 0.2 g/(m2.%RH): negligible
- 0.2 < MBV < 0.5 g/(m2.%RH): limited
- 0.5 < MBV < 1.0 g/(m2.%RH): moderate
- < MBV < 2.0 g/(m2.%RH): good
- 2 g/(m2.%RH) < MBV: excellent
2.1.2. Study following the NORDTEST Protocol
2.1.3. Modified Protocols
2.2. Materials
2.2.1. Production of Specimens
2.2.2. Density and Porosity
3. Results
3.1. Experimental Conditions
3.1.1. Stabilization Time
3.1.2. Ambient Conditions Control
3.1.3. Air Velocity Control
3.2. NORDTEST Project
3.3. Influence of Air Velocity
3.4. Influence of Initial Conditioning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kreiger, B.K.; Srubar, W.V. Moisture buffering in buildings: A review of experimental and numerical methods. Energy Build. 2019, 202, 109394. [Google Scholar] [CrossRef]
- Rode, C.; Peuhkuri, R.H.; Mortensen, L.H.; Hansen, K.K.; Time, B.; Gustavsen, A.; Ojanen, T.; Ahonen, J.; Svennberg, K.; Arfvidsson, J.; et al. Moisture Buffering of Building Materials; BYG·DTU R-126; Department of Civil Engineering, Technical University of Denmark: Lyngby, Denmark, 2005. [Google Scholar]
- Rahim, M.; Douzane, O.; Tran Le, A.D.; Promis, G.; Laidoudi, B.; Crigny, A.; Dupre, B.; Langlet, T. Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy Build. 2015, 88, 91–99. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Experimental investigation of moisture buffering capacity of sprayed hemp concrete. Constr. Build. Mater. 2012, 36, 58–65. [Google Scholar] [CrossRef]
- Collet, F.; Chamoin, J.; Pretot, S.; Lanos, C. Comparison of the hygric behaviour of three hemp concretes. Energy Build. 2013, 62, 294–303. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Tran Le, A.D.; Promis, G.; Langlet, T. Characterization and comparison of hygric properties of rape straw concrete and hemp concrete. Constr. Build. Mater. 2016, 102, 679–687. [Google Scholar] [CrossRef]
- De Bruijn, P.; Johansson, P. Moisture fixation and thermal properties of lime–hemp concrete. Constr. Build. Mater. 2013, 47, 1235–1242. [Google Scholar] [CrossRef]
- Cerezo, V. Propriétés Mécaniques, Thermiques et Acoustiques d’un Matériau à Base de Particules Végétales: Approche Expérimentale et Modélisation Théorique; Institut National des Sciences Appliquées: Lyon, France, 2005; p. 1. [Google Scholar]
- Strandberg-de Bruijn, P.; Johansson, P. Moisture transport properties of lime–hemp concrete determined over the complete moisture range. Biosyst. Eng. 2014, 122, 31–41. [Google Scholar] [CrossRef]
- Collet, F.; Prétot, S.; Lanos, C. Hemp-Straw Composites: Thermal and Hygric Performances. Energy Procedia 2017, 139, 294–300. [Google Scholar] [CrossRef]
- Maalouf, C.; Umurigirwa, B.S.; Viens, N.; Lachi, M.; Mai, T.H. Study of the Hygric Behaviour and Moisture Buffering Performance of a Hemp–Starch Composite Panel for Buildings. BioResources 2014, 10, 336–347. [Google Scholar] [CrossRef]
- Ramos, N.M.M.; Delgado, J.M.P.Q.; de Freitas, V.P. Influence of finishing coatings on hygroscopic moisture buffering in building elements. Constr. Build. Mater. 2010, 24, 2590–2597. [Google Scholar] [CrossRef]
- Ronzino, A.; Corrado, V. Measuring the Hygroscopic Properties of Porous Media in Transient Regime. From the Material Level to the Whole Building HAM Simulation of a Coated Room. Energy Procedia 2015, 78, 1501–1506. [Google Scholar] [CrossRef]
- Roles, S.; Janssen, H. Is the moisture buffer value a reliable material property to characterise the hygric buffering capacities of building materials. In Conference paper; Laboratory of Building Physics: Leuven, Belgium, 2005. [Google Scholar]
- Tran Le, A.D. Etude des Transferts Hygrothermiques Dans le Béton de Chanvre et Leur Application au Bâtiment (Sous Titre: Simulation Numérique et Approche Expérimentale). Ph.D. Thesis, Université de Reims-Champagne Ardenne, Reims, France, 2010. [Google Scholar]
- Evrard, A. Sorption behaviour of Lime-Hemp Concrete and its relation to indoor comfort and energy demand. In Proceedings of the PLEA2006—The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006; p. 6. [Google Scholar]
- Dubois, S.; Evrard, A.; Lebeau, F. Hygrothermal modelling of Lime-Hemp concrete used as building material and indoor climate buffering characterization. In Proceedings of the International Conference of Agricultural Engineering, Valence, Spain, 8–12 July 2012. [Google Scholar]
- Mazhoud, B.; Collet, F.; Prétot, S.; Lanos, C. Effect of hemp content and clay stabilization on hygric and thermal properties of hemp-clay composites. Constr. Build. Mater. 2021, 300, 123878. [Google Scholar] [CrossRef]
- Sawadogo, M.; Benmahiddine, F.; Hamami, A.E.A.; Belarbi, R.; Godin, A.; Duquesne, M. Investigation of a novel bio-based phase change material hemp concrete for passive energy storage in buildings. Appl. Therm. Eng. 2022, 212, 118620. [Google Scholar] [CrossRef]
- Abdellatef, Y.; Khan, M.A.; Khan, A.; Alam, M.I.; Kavgic, M. Mechanical, Thermal, and Moisture Buffering Properties of Novel Insulating Hemp-Lime Composite Building Materials. Materials 2020, 13, 5000. [Google Scholar] [CrossRef] [PubMed]
- Roels, S.; Janssen, H. A Comparison of the Nordtest and Japanese Test Methods for the Moisture Buffering Performance of Building Materials. J. Build. Phys. 2006, 30, 137–161. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S.; Mazhoud, B.; Bessette, L.; Lanos, C. Comparing Hemp Composites made with Mineral or Organic Binder on Thermal, Hygric and Mechanical Point of View. Acad. J. Civ. Eng. 2015, 33, 228–234. [Google Scholar]
- Latif, E.; Lawrence, M.; Shea, A.; Walker, P. Moisture buffer potential of experimental wall assemblies incorporating formulated hemp-lime. Build. Environ. 2015, 93, 199–209. [Google Scholar] [CrossRef]
- Cascione, V.; Cavone, E.; Maskell, D.; Shea, A.; Walker, P. The effect of air velocity on moisture buffering. MATEC Web Conf. 2019, 282, 2007. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, H.; Xuan, Y. Experimental investigation of thermal properties and moisture buffering performance of composite interior finishing materials under different airflow conditions. Build. Environ. 2019, 160, 106175. [Google Scholar] [CrossRef]
- Holcroft, N.; Shea, A. Effect of Compaction on Moisture Buffering of Hemp-Lime Insulation. Acad. J. Civ. Eng. 2015, 33, 542–546. [Google Scholar]
- Osanyintola, O.F.; Talukdar, P.; Simonson, C.J. Effect of initial conditions, boundary conditions and thickness on the moisture buffering capacity of spruce plywood. Energy Build. 2006, 38, 1283–1292. [Google Scholar] [CrossRef]
- Tian, S.-Q.; Wang, K.; Fan, L.-W.; Yu, Z.-T.; Ge, J. Effects of sample length on the transient measurement results of water vapor diffusion coefficient of porous building materials: A case study of autoclave aerated concrete (AAC) with various porosities. Int. J. Heat Mass Transf. 2019, 135, 209–219. [Google Scholar] [CrossRef]
- Koronthalyova, O. Moisture storage capacity and microstructure of ceramic brick and autoclaved aerated concrete. Constr. Build. Mater. 2011, 25, 879–885. [Google Scholar] [CrossRef]
- Jerman, M.; Keppert, M.; Výborný, J.; Černý, R. Hygric, thermal and durability properties of autoclaved aerated concrete. Constr. Build. Mater. 2013, 41, 352–359. [Google Scholar] [CrossRef]
- Driss, S. Analyse Physique et Caractérisation Hygrothermique des Matériaux de Construction: Approche Expérimentale et Modélisation Numérique; Ecole Nationale des Travaux Publics de l’Etat: Vaulx-en-Velin, France, 2008. [Google Scholar]
- Zhou, M.; Li, X.; Feng, C.; Janssen, H. Hygric properties of porous building materials (VIII): Influence of reduced air pressure. Build. Environ. 2022, 225, 109680. [Google Scholar] [CrossRef]
- Galbraith, G.H.; McLean, R.C.; Tao, Z.; Kang, N. The comparability of water vapour permeability measurements: Investigation assessing comparability of measured vapour permeability values obtained from range of laboratories throughout European community. Build. Res. Inf. 1992, 20, 364–372. [Google Scholar] [CrossRef]
- Amziane, S.; Collet, F.; Lawrence, M.; Picandet, V.; Lanos, C.; Marceau, S.; Pavia, S. Bio-Aggregates Based Building Materials: State-of-the-Art Report of the RILEM Technical Committee 236-BBM; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Lelievre, D.; Colinart, T.; Glouannec, P. Hygrothermal behavior of bio-based building materials including hysteresis effects: Experimental and numerical analyses. Energy Build. 2014, 84, 617–627. [Google Scholar] [CrossRef]
- Cascione, V.; Maskell, D.; Shea, A.; Walker, P. A review of moisture buffering capacity: From laboratory testing to full-scale measurement. Constr. Build. Mater. 2019, 200, 333–343. [Google Scholar] [CrossRef]
- McGregor, F.; Heath, A.; Fodde, E.; Shea, A. Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Build. Environ. 2014, 75, 11–18. [Google Scholar] [CrossRef]
- DIN EN 12860; Gypsum Based Adhesives for Gypsum Blocks—Definitions, Requirements and Test Methods. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2002.
- Amziane, S.; Collet, F.; Lawrence, M.; Magniont, C.; Picadent, V.; Sonebi, M. Recommendation of the RILEM TC 236-BBM: Characterisation testing of hemp shiv to determine the initial water content, water absorption, dry density, particle size distribution and thermal conductivity. Mater. Struct. 2017, 50, 167. [Google Scholar] [CrossRef]
- EN ISO 12571:2021; Hygrothermal Performance of Building Materials and Products—Determination of Hygroscopic Sorption Properties. ISO: Geneva, Switzerland, 2021.
- Lanzón, M.; Castellón, F.J.; Ayala, M. Effect of the expanded perlite dose on the fire performance of gypsum plasters. Constr. Build. Mater. 2022, 346, 128494. [Google Scholar] [CrossRef]
- Romero-Gómez, M.I.; Silva, R.V.; Costa-Pereira, M.F.; Flores-Colen, I. Thermal and mechanical performance of gypsum composites with waste cellulose acetate fibres. Constr. Build. Mater. 2022, 356, 129308. [Google Scholar] [CrossRef]
- Amran, M.; Onaizi, A.M.; Fediuk, R.; Danish, A.; Vatin, N.I.; Murali, G.; Abdelgader, H.S.; Ali Mosaberpanah, M.; Cecchin, D.; Azevedo, A. An ultra-lightweight cellular concrete for geotechnical applications – A review. Case Stud. Constr. Mater. 2022, 16, e01096. [Google Scholar] [CrossRef]
- Collet, F.; Bart, M.; Serres, L.; Miriel, J. Porous structure and water vapour sorption of hemp-based materials. Constr. Build. Mater. 2008, 22, 1271–1280. [Google Scholar] [CrossRef]
- Collet, F.; Khaled, S.; Prétot, S.; Bart, M. First Step towards the Upscaling of the Production of Washing Fines-Hemp Composite. Study of Multiphysical Properties. In Construction Technologies and Architecture; Trans Tech Publications Ltd.: Barcelona, Spain, 2022; pp. 219–226. Available online: https://www.scientific.net/CTA.1.219 (accessed on 8 February 2022).
- EN ISO 11508:2017; Soil Quality—Determination of Particle Density. ISO: Geneva, Switzerland, 2017.
- Dogan, G.M.; Arbag, H.; Koyuncu, D.D.E. Effect of graphene-based additives on mechanical strength and microstructure of gypsum plaster. Mater. Today Commun. 2022, 33, 104555. [Google Scholar] [CrossRef]
- Mortada, N. Mousses minérales: Développement et Propriétés d’usage. Acad. J. Civ. Eng. 2022, 40, 313–320. [Google Scholar]
- Álvarez, M.; Ferrández, D.; Morón, C.; Atanes-Sánchez, E. Characterization of a New Lightened Gypsum-Based Material Reinforced with Fibers. Materials 2021, 14, 1203. [Google Scholar] [CrossRef]
- Lozano-Díez, R.V.; López-Zaldívar, Ó.; Herrero-del-Cura, S.; Mayor-Lobo, P.L.; Hernández-Olivares, F. Mechanical Behavior of Plaster Composites Based on Rubber Particles from End-of-Life Tires Reinforced with Carbon Fibers. Materials 2021, 14, 3979. [Google Scholar] [CrossRef]
- Stejskalová, K.; Bujdoš, D.; Procházka, L.; Smetana, B.; Zla, S.; Teslik, J. Mechanical, Thermal, and Fire Properties of Composite Materials Based on Gypsum and PCM. Materials 2022, 15, 1253. [Google Scholar] [CrossRef]
- Flores Medina, N.; Barbero-Barrera, M.M.; Bustamante, R. Improvement of the properties of gypsum-based composites with recycled isostatic graphite powder from the milling production of molds for Electrical Discharge Machining (EDM) used as a new filler. Constr. Build. Mater. 2016, 107, 17–27. [Google Scholar] [CrossRef]
- Jaffel, H. Caractérisation Multi-échelles de Matériaux Poreux en Évolution: Cas du Plâtre. Ph.D. Thesis, Ecole Polytechnique X, Palaiseau, France, 2006. [Google Scholar]
- Jaffel, H.; Korb, J.-P.; Ndobo-Epoy, J.-P.; Guicquero, J.-P.; Morin, V. Multi-scale Approach Continuously Relating the Microstructure and the Macroscopic Mechanical Properties of Plaster Pastes during Their Settings. J. Phys. Chem. B. 2006, 110, 18401–18407. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.-Y.; Fan, L.-W.; Fu, J.-H.; Xu, X.; Yu, Z.-T. Experimental determination of the water vapor diffusion coefficient of autoclaved aerated concrete (AAC) via a transient method: Effects of the porosity and temperature. Int. J. Heat Mass Transf. 2016, 103, 607–610. [Google Scholar] [CrossRef]
- Roels, S.; Carmeliet, J.; Hens, H.; Adan, O.; Brocken, H.; Cerny, R.; Pavlik, Z.; Hall, C.; Kumaran, K.; Pel, L.; et al. Interlaboratory Comparison of Hygric Properties of Porous Building Materials. J. Therm. Envel. Build. Sci. 2004, 27, 307–325. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef]
- Chamoin, J. Optimisation des Propriétés (Physiques, Mécaniques et Hydriques) de Bétons de Chanvre par la Maîtrise de la Formulation. Ph.D. Thesis, INSA de Rennes, Rennes, France, 2013. [Google Scholar]
- Arnaud, L.; Gourlay, E. Experimental study of parameters influencing mechanical properties of hemp concretes. Constr. Build. Mater. 2012, 28, 50–56. [Google Scholar] [CrossRef]
- Lewis, W.K. The evaporation of a liquid into a gas. Int. J. Heat Mass Transfer 1962, 5, 109–112. [Google Scholar] [CrossRef]
- McAdams, W.H. Heat Transmission; McGraw-Hill Kogakusha: Tokyo, Japan, 1954. [Google Scholar]
- Asli, M.; Brachelet, F.; Sassine, E.; Antczak, E. Thermal and hygroscopic study of hemp concrete in real ambient conditions. J. Build. Eng. 2021, 44, 102612. [Google Scholar] [CrossRef]
Effect of Air Velocity | Effect of Initial Conditioning | |||||||
---|---|---|---|---|---|---|---|---|
Test 1 (NORDTEST) | Intermediate Cycles | Test 2 | Intermediate Cycles | Test 3 | Test 4 | Test 5 | Test 6 | |
Number of cycles | 5 | 2 | 5 | 2 | 5 | 5 | ||
Air velocities | 0.1 m/s | Follow the first test conditions | Higher air velocities | Follow the second test conditions | Higher air velocities | 0.1 m/s | ||
Initial conditions | Dried then stabilized at 23 °C; 50%RH | Follow test 1 | Follow test 2 | Dried then stabilized at 23 °C; 33%RH | 23 °C 50%RH | 23 °C 65%RH |
For MBV Test | For Density and Porosity Measurement | |||
---|---|---|---|---|
GY | CC | TH and FH | GY, CC, TH and FH | |
h [mm] | 48 | 100 | 108 | 76 |
d [mm] | 114 | 114 | 118 | 57 |
Thermo-Hemp (TH) | Fine-Hemp (FH) | |
---|---|---|
T: Thermo | 2.00 | 0.18 |
F: Fines | - | 1.82 |
H: Hemp Biofibat | 1.00 | 1.00 |
WT: Total water | 1.60 | 1.60 |
Materials | Apparent Density23°C;50%RH [kg/m3] | Dry Apparent Density [kg/m3] | Real Density [kg/m3] | Total Porosity [%] | Open Porosity [%] |
---|---|---|---|---|---|
GY | 1005 ± 10 | 1002 ± 8 | 2611 ± 20 | 62.17 | 55.55 ± 0.67 |
CC | 518 ± 5 | 513 ± 5 | 2602 ± 53 | 81.34 | 72.38 ± 1.58 |
TH | 425 ± 9 | 408 ± 15 | 1752 ± 54 | 76.53 | 76.22 ± 1.77 |
FH | 364 ± 9 | 350 ± 8 | 1866 ± 49 | 81.30 | - |
Test 1 | Test 4 | Test 5 | Test 6 | |
---|---|---|---|---|
CC | 17 days | 18 days | 2 days | 2 days |
TH | 10 weeks | 7 weeks | 4 weeks | 9 weeks |
FH | 9 weeks | 5 weeks | 3 weeks | 7 weeks |
Effect of Air Velocity | Efect of Initial Water Content | |||||
---|---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | |
HRads. [%] | 69.01 | 68.67 | 67.77 | 69.74 | 69.93 | 72.67 |
HRdes. [%] | 29.18 | 27.03 | 26.15 | 29.02 | 28.43 | 30.95 |
Tads.&des. [°C] | 21.83 | 22.29 | 22.23 | 22.50 | 22.68 | 22.48 |
Specimens and Density(23°C;50%RH) [kg/m3] | Air Velocities [m/s] | MBV Ads. [g/(m2.%RH)] | MBV Des. [g/(m2.%RH)] | MBV Av. [g/(m2.%RH)] |
---|---|---|---|---|
GY-c-3 1000.2 | 0.086 0.011 | 0.52 0.01 | 0.49 ± 0.01 | 0.51 ± 0.01 |
0.713 0.068 | 0.56 0.01 | 0.57 0.01 | 0.56 0.01 | |
2.589 0.056 | 0.56 0.01 | 0.56 0.01 | 0.56 0.01 | |
GY-c-4 997.5 | 0.118 0.014 | 0.5.02 | 0.5.01 | 0.55 0.01 |
0.409 0.022 | 0.51 0.01 | 0.51 0.00 | 0.51 0.00 | |
2.585 0.046 | 0.5.01 | 0.5.02 | 0.5.01 | |
GY-c-6 1015.4 | 0.106 0.006 | 0.5.01 | 0.51 0.01 | 0.52 0.01 |
0.640 0.039 | 0.53 0.01 | 0.53 0.00 | 0.53 0.00 | |
1.457 0.054 | 0.5.01 | 0.53 0.01 | 0.53 0.00 | |
CC-c-1 521.5 | 0.096 0.006 | 1.22 0.02 | 1.25 0.03 | 1.2.02 |
0.376 0.014 | 1.22 0.01 | 1.2.01 | 1.2.01 | |
1.452 0.061 | 1.33 0.03 | 1.3.01 | 1.3.01 | |
CC-c-2 513.0 | 0.089 0.012 | 1.2.02 | 1.24 0.03 | 1.22 0.02 |
0.487 0.038 | 1.22 0.00 | 1.2.01 | 1.2.00 | |
0.818 0.035 | 1.26 0.02 | 1.2.02 | 1.26 0.01 | |
CC-c-7 520.1 | 0.097 0.008 | 1.2.01 | 1.24 0.03 | 1.2.02 |
0.796 0.031 | 1.22 0.01 | 1.28 0.07 | 1.25 0.00 | |
1.777 0.083 | 1.19 0.03 | 1.1.02 | 1.19 0.01 | |
TH-c-4 418.2 | 0.116 0.010 | 2.12 0.02 | 2.1.04 | 2.1.03 |
0.473 0.032 | 2.5.03 | 2.55 0.02 | 2.5.02 | |
0.758 0.019 | 2.61 0.02 | 2.69 0.03 | 2.65 0.01 | |
TH-c-5 435.1 | 0.104 0.014 | 2.3.02 | 2.31 0.05 | 2.31 0.03 |
0.678 0.028 | 3.03 0.00 | 3.0.07 | 3.0.03 | |
1.042 0.035 | 3.4.03 | 3.5.04 | 3.50 0.03 | |
TH-c-7 422.9 | 0.099 0.008 | 2.0.020 | 2.09 0.04 | 2.09 0.02 |
0.528 0.020 | 2.5.032 | 2.5.02 | 2.5.02 | |
0.981 0.030 | 4.37 0.11 | 4.31 0.11 | 4.34 0.05 | |
FH-c-3 371.7 | 0.089 0.006 | 2.41 0.03 | 2.46 0.04 | 2.4.03 |
0.527 0.024 | 2.8.03 | 2.890.02 | 2.87 0.02 | |
1.341 0.034 | 4.60 ± 0.15 | 4.79 ± 0.09 | 4.69 ± 0.03 | |
FH-c-4 365.9 | 0.108 0.013 | 2.4.02 | 2.5.02 | 2.4.02 |
1.018 0.031 | 3.68 0.05 | 3.8.04 | 3.76 0.01 | |
1.909 0.507 | 6.23 0.05 | 6.23 0.07 | 6.23 0.02 | |
FH-c-5 353.9 | 0.117 0.011 | 2.21 0.02 | 2.2.04 | 2.23 0.03 |
0.596 0.040 | 2.45 0.03 | 2.5.01 | 2.4.01 | |
1.147 0.025 | 3.0.04 | 3.08 0.03 | 3.0.02 |
Test 1 Dried Then Stabilized at 23 °C; 50%RH | Test 4 Dried Then Stabilized at 23 °C; 33%RH | Test 5 After Test 4, Stabilized at 23 °C; 50%RH | Test 6 After Test 5, Stabilized at 23 °C; 65%RH | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wini [%] | wfin [%] | Δm [g] | MBV [g/(m2.%RH)] | wini [%] | wfin [%] | Δm [g] | MBV [g/(m2.%RH)] | wini [%] | wfin [%] | Δm [g] | MBV [g/(m2.%RH)] | wini [%] | wfin [%] | Δm [g] | MBV [g/(m2.%RH)] | |
GY-c-3 | 0.16 | 0.17 | 0.21 | 0.51 ± 0.01 | 0.03 | 0.13 | 0.20 | 0.48 ± 0.01 | 0.17 | 0.14 | 0.19 | 0.46 ± 0.00 | 0.23 | 0.14 | 0.19 | 0.45 ± 0.00 |
GY-c-4 | 0.17 | 0.18 | 0.22 | 0.55 ± 0.01 | 0.03 | 0.17 | 0.23 | 0.53 ± 0.02 | 0.18 | 0.18 | 0.21 | 0.49 ± 0.00 | 0.25 | 0.16 | 0.21 | 0.49 ± 0.01 |
GY-c-6 | 0.15 | 0.16 | 0.21 | 0.52 ± 0.01 | 0.03 | 0.19 | 0.21 | 0.49 ± 0.01 | 0.17 | 0.21 | 0.20 | 0.48 ± 0.00 | 0.23 | 0.19 | 0.20 | 0.47 ± 0.00 |
CC-c-1 | 0.79 | 0.75 | 0.38 | 1.24 ± 0.02 | 0.80 | 0.87 | 0.36 | 1.11 ± 0.01 | 1.00 | 0.96 | 0.37 | 1.13 ± 0.00 | 1.32 | 1.16 | 0.37 | 1.14 ± 0.02 |
CC-c-2 | 0.78 | 0.75 | 0.38 | 1.22 ± 0.02 | 0.80 | 0.88 | 0.35 | 1.09 ± 0.01 | 1.01 | 0.96 | 0.36 | 1.11 ± 0.00 | 1.32 | 1.16 | 0.37 | 1.12 ± 0.02 |
CC-c-7 | 0.81 | 0.77 | 0.38 | 1.23 ± 0.02 | 0.78 | 0.85 | 0.36 | 1.11 ± 0.01 | 0.98 | 0.93 | 0.36 | 1.12 ± 0.01 | 1.30 | 1.14 | 0.42 | 1.13 ± 0.01 |
TH-c-4 | 3.01 | 2.95 | 0.78 | 2.13 ± 0.03 | 1.83 | 2.12 | 0.73 | 1.89 ± 0.01 | 2.79 | 2.70 | 0.73 | 1.91 ± 0.01 | 4.75 | 4.40 | 0.78 | 2.02 ± 0.01 |
TH-c-5 | 3.07 | 3.02 | 0.79 | 2.31 ± 0.03 | 1.80 | 2.09 | 0.75 | 2.10 ± 0.01 | 2.75 | 2.66 | 0.74 | 2.08 ± 0.01 | 4.67 | 4.32 | 0.79 | 2.19 ± 0.01 |
TH-c-7 | 3.05 | 2.99 | 0.77 | 2.09 ± 0.02 | 1.78 | 2.08 | 0.74 | 1.93 ± 0.01 | 2.74 | 2.65 | 0.74 | 1.91 ± 0.01 | 4.70 | 4.34 | 0.78 | 2.01 ± 0.01 |
FH-c-3 | 1.85 | 1.76 | 0.88 | 2.44 ± 0.03 | 1.55 | 1.86 | 0.81 | 2.16 ± 0.01 | 2.37 | 2.24 | 0.81 | 2.15 ± 0.01 | 3.25 | 2.77 | 0.87 | 2.29 ± 0.02 |
FH-c-4 | 1.96 | 1.86 | 0.90 | 2.47 ± 0.02 | 1.56 | 1.87 | 0.84 | 2.19 ± 0.01 | 2.38 | 2.26 | 0.83 | 2.16 ± 0.00 | 3.47 | 2.98 | 0.88 | 2.28 ± 0.02 |
FH-c-5 | 2.05 | 1.96 | 0.88 | 2.23 ± 0.03 | 1.55 | 1.87 | 0.82 | 1.99 ± 0.01 | 2.38 | 2.25 | 0.80 | 1.96 ± 0.01 | 3.49 | 2.99 | 0.87 | 2.11 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaled, S.; Collet, F.; Prétot, S.; Bart, M. Effect of Air Velocity and Initial Conditioning on the Moisture Buffer Value of Four Different Building Materials. Materials 2023, 16, 3284. https://doi.org/10.3390/ma16083284
Khaled S, Collet F, Prétot S, Bart M. Effect of Air Velocity and Initial Conditioning on the Moisture Buffer Value of Four Different Building Materials. Materials. 2023; 16(8):3284. https://doi.org/10.3390/ma16083284
Chicago/Turabian StyleKhaled, Sana, Florence Collet, Sylvie Prétot, and Marjorie Bart. 2023. "Effect of Air Velocity and Initial Conditioning on the Moisture Buffer Value of Four Different Building Materials" Materials 16, no. 8: 3284. https://doi.org/10.3390/ma16083284
APA StyleKhaled, S., Collet, F., Prétot, S., & Bart, M. (2023). Effect of Air Velocity and Initial Conditioning on the Moisture Buffer Value of Four Different Building Materials. Materials, 16(8), 3284. https://doi.org/10.3390/ma16083284