Neural Network Aided Homogenization Approach for Predicting Effective Thermal Conductivity of Composite Construction Materials
Abstract
:1. Introduction
2. Objectives
3. Methodology
3.1. Homogenization Scheme
3.2. Neural Network Approach
3.3. Material Structure Modelling
4. Experiment
4.1. Materials
4.2. Test Method and Results
5. Results and Discussion
5.1. Model Validation
5.2. Discussion on the Number of Elements
5.3. Discussion on Material Meso-Structure
5.4. Discussion on Thermal Conductivity Improvement
5.5. Effect of Aggregate Cracking on Thermal Conductivity
5.6. Effect of Concrete Segregation on Thermal Conductivity
5.7. Summary of Discussion
6. Conclusions
- (1)
- The accuracy of the neural network aided approach is acceptable with relative errors of 1.92~4.34% for the dense graded asphalt mixture, 1.10~6.85% for the porous asphalt mixture, and 1.13~3.14% for the cement concrete.
- (2)
- For a given heterogeneous structure discretized into 2n × 2n square elements, when n = 9, the relative errors for all the materials are lower than 5%, indicating it is reasonable to divide the heterogeneous structure into 512 × 512 elements.
- (3)
- Ignoring the actual material meso-structures may lead to significant errors (134.01%) in predicting the effective thermal conductivity of materials with high heterogeneity such as porous asphalt mixture. However, proper simplification is acceptable for dense construction composite materials.
- (4)
- The effective thermal conductivity of composite cement-asphalt mixtures increases with the higher saturation of grouted material. However, the improvement effect of a high-conductive cement paste on the composite cement-asphalt mixtures could be significantly reduced when the cement paste concentrates at the bottom of the mixture.
- (5)
- Cracked aggregates may slightly reduce the effective thermal conductivity of dense graded asphalt mixture.
- (6)
- Segregation of concrete components tends to decrease the effective thermal conductivity of cement concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Wang, H. Impact of warming temperature on asphalt pavement overlay performance and cost: Case study in New Jersey. Road Mater. Pavement Des. 2022, 23, 2886–2899. [Google Scholar] [CrossRef]
- Cheela, V.S.; John, M.; Biswas, W.; Sarker, P. Combating urban heat island effect—A review of reflective pavements and tree shading strategies. Buildings 2021, 11, 93. [Google Scholar] [CrossRef]
- ACI (American Concrete Institute). Guide to Thermal Properties of Concrete and Masonry Systems; ACI: Farmington Hills, MI, USA, 2002. [Google Scholar]
- AASHTO. Mechanistic—Empirical Pavement Design Guide: A Manual of Practice; AASHTO: Washington, DC, USA, 2008. [Google Scholar]
- Hall, M.R.; Dehdezi, P.K.; Dawson, A.R.; Grenfell, J.; Isola, R. Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions. J. Mater. Civ. Eng. 2012, 24, 32–47. [Google Scholar] [CrossRef]
- Byzyka, J.; Rahman, M.; Chamberlain, D.A. A laboratory investigation on thermal properties of virgin and aged asphalt mixture. Constr. Build. Mater. 2021, 305, 124757. [Google Scholar] [CrossRef]
- Rathore, M.; Haritonovs, V.; Meri, R.M.; Zaumanis, M. Rheological and chemical evaluation of aging in 100% reclaimed asphalt mixtures containing rejuvenators. Constr. Build. Mater. 2022, 318, 126026. [Google Scholar] [CrossRef]
- Yan, X.; Chen, L.; You, Q.; Fu, Q. Experimental analysis of thermal conductivity of semi-rigid base asphalt pavement. Road Mater. Pavement Des. 2019, 20, 1215–1227. [Google Scholar] [CrossRef]
- Sargam, Y.; Wang, K.; Alleman, J.E. Effects of modern concrete materials on thermal conductivity. J. Mater. Civ. Eng. 2020, 32, 04020058. [Google Scholar] [CrossRef]
- Jiao, W.; Sha, A.; Liu, Z.; Li, W.; Jiang, W.; Qin, W.; Hu, Y. Study on thermal properties of steel slag asphalt concrete for snow-melting pavement. J. Clean. Prod. 2020, 277, 123574. [Google Scholar] [CrossRef]
- Chen, Y.; Lyu, L.; Pei, J.; Zhang, G.; Wen, Y.; Zhang, J. Novel asphalt-mix design with high thermal diffusivity for alleviating the urban heat island. J. Mater. Civ. Eng. 2020, 32, 04020321. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.; Hu, X.; Wang, P.; Liu, Q. Effect of freezing-thawing and ageing on thermal characteristics and mechanical properties of conductive asphalt concrete. Constr. Build. Mater. 2017, 140, 239–247. [Google Scholar] [CrossRef]
- Jeong, S.T.; Bui, Q.T.; Yang, I.H. A Comparative Study of the Thermal Conductivities of CBA Porous Concretes. Materials 2022, 15, 5204. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, M.A.; Sawalha, A.A.; Aljarrah, M.T.; Alsheyab, M.A. Effect of aggregate gradation and asphalt mix volumetrics on the thermal properties of asphalt concrete. Case Stud. Constr. Mater. 2023, 18, e01725. [Google Scholar] [CrossRef]
- Mirzanamadi, R.; Johansson, P.; Grammatikos, S.A. Thermal properties of asphalt concrete: A numerical and experimental study. Constr. Build. Mater. 2018, 158, 774–785. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Li, L. Determination of Effective Thermal Conductivity of Asphalt Concrete with Random Aggregate Microstructure. J. Mater. Civ. Eng. 2015, 27, 04015045. [Google Scholar] [CrossRef]
- Mu, K.; Chen, J.; Mu, Q.; Garg, A.; Gao, Z.; Li, Y. Development of a microstructure-based numerical approach for analyzing heat transfer within the asphalt mixture. Constr. Build. Mater. 2020, 260, 119890. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Ren, Z. Computational analysis of thermal conductivity of asphalt mixture using virtually generated three-dimensional microstructure. J. Mater. Civ. Eng. 2017, 29, 04017234. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Wang, H.; Li, L. Evaluation of thermal conductivity of asphalt concrete with heterogeneous microstructure. Appl. Therm. Eng. 2015, 84, 368–374. [Google Scholar] [CrossRef]
- Han, D.; Liu, G.; Xi, Y.; Zhao, Y.; Tang, D. Performance prediction of asphalt mixture based on dynamic reconstruction of heterogeneous microstructure. Powder Technol. 2021, 392, 356–366. [Google Scholar] [CrossRef]
- Han, D.; Liu, G.; Zhao, Y.; Pan, Y.; Yang, T. Research on thermal properties and heat transfer of asphalt mixture based on 3D random reconstruction technique. Constr. Build. Mater. 2021, 270, 121393. [Google Scholar] [CrossRef]
- Fu, C.; Liu, K.; Liu, Q.; Xu, P.; Dai, D.; Tong, J. Exploring directional energy conversion behavior of electromagnetic-based multifunctional asphalt pavement. Energy 2023, 268, 126573. [Google Scholar] [CrossRef]
- He, L.; Chu, L.; Wang, H.; Fwa, T.F. Experimental-cum-Numerical approach for thermal conductivity determination of asphalt paving mixture and its constituents. Constr. Build. Mater. 2022, 345, 128357. [Google Scholar] [CrossRef]
- Patil, P.; Reddy, K.S. A semi-analytical solution to estimate an effective thermal conductivity of the two-phase building materials with spherical inclusions. Heat Mass Transfer. 2020, 56, 3209–3227. [Google Scholar] [CrossRef]
- Tran-Le, A.D.; Nguyen, S.T.; Langlet, T. A novel anisotropic analytical model for effective thermal conductivity tensor of dry lime-hemp concrete with preferred spatial distributions. Energy Build. 2019, 182, 75–87. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, H.; Zhang, L.; Chen, C. Computational analysis of thermal conductivity of asphalt mixture based on a multiscale mathematical model. J. Eng. Mech. 2018, 144, 04018064. [Google Scholar] [CrossRef]
- Shen, L.; Yao, X.; Zhu, D.; Alkayem, N.F.; Cao, M.; Ren, Q. A thermal cracking pattern-based multiscale homogenization method for effective thermal conductivity of steel fiber reinforced concrete after high temperature. Int. J. Heat Mass Transf. 2021, 180, 121732. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Zhou, C. Thermal conduction and insulation modification in asphalt-based composites. J. Mater. Sci. Technol. 2012, 28, 285–288. [Google Scholar] [CrossRef]
- Lu, X.; Tong, F.; Liu, G.; Guan, J. Model for predicting the thermal conductivity of concrete. Int. J. Thermophys. 2021, 42, 34. [Google Scholar] [CrossRef]
- Molavi Nojumi, M.; Huang, Y.; Hashemian, L.; Bayat, A. Application of machine learning for temperature prediction in a test road in Alberta. Int. J. Pavement Res. Technol. 2022, 15, 303–319. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.J.; Cho, B.S. Effective prediction of thermal conductivity of concrete using neural network method. Ind. J. Concr. Struct. Mater. 2012, 6, 177–186. [Google Scholar] [CrossRef]
- Sargam, Y.; Wang, K.; Cho, I.H. Machine learning based prediction model for thermal conductivity of concrete. J. Build. Eng. 2021, 34, 101956. [Google Scholar] [CrossRef]
- Chen, J.; Chu, R.; Wang, H.; Xie, P. Experimental measurement and microstructure-based simulation of thermal conductivity of unbound aggregates. Constr. Build. Mater. 2018, 189, 8–18. [Google Scholar] [CrossRef]
- Chu, L.; He, L.; Fwa, T.F. Determination of thermal conductivity of asphalt paving mixtures using finite element method. Constr. Build. Mater. 2020, 243, 118250. [Google Scholar] [CrossRef]
- Chu, L.; He, L.; Fwa, T.F. 3-Dimensional finite element modelling of asphalt mixtures for thermal conductivity determination. Int. J. Pavement Eng. 2022, 23, 2009–2018. [Google Scholar] [CrossRef]
- Hassani, A.; Taghipoor, M.; Karimi, M.M. A state of the art of semi-flexible pavements: Introduction, design, and performance. Constr. Build. Mater. 2020, 253, 119196. [Google Scholar] [CrossRef]
- Deng, H.; Wang, S.; Du, Y.; Wei, T. Matching the color difference between asphalt mixture and cement grouting paste used in semi-flexible pavement. Front. Mater. 2022, 9, 816247. [Google Scholar]
- Du, Y.; Wei, H.; Dai, M.; Liu, W. Using silicon carbide to increase thermal conductivity of cement composite for improving heating efficiency of floor heating system. Constr. Build. Mater. 2022, 325, 126707. [Google Scholar]
- Rahmadiawan, D.; Abral, H.; Kotodeli, R.A.; Sugiarti, E.; Muslimin, A.N.; Admi, R.I.; Arafat, A.; Kim, H.J.; Sapuan, S.M.; Kosasih, E.A. A novel highly conductive, transparent, and strong pure-cellulose film from tempo-oxidized bacterial cellulose by increasing sonication power. Polymers 2023, 15, 643. [Google Scholar] [CrossRef]
- Tenza-Abril, A.J.; Benavente, D.; Pla, C.; Baeza-Brotons, F.; Valdes-Abellan, J.; Solak, A.M. Statistical and experimental study for determining the influence of the segregation phenomenon on physical and mechanical properties of lightweight concrete. Constr. Build. Mater. 2020, 238, 117642. [Google Scholar] [CrossRef]
- Solak, A.M.; Tenza-Abril, A.J.; García-Vera, V.E. Influence of the segregation phenomenon on structural efficiency of lightweight aggregate concretes. Materials 2020, 13, 5754. [Google Scholar] [CrossRef]
Sieve Size (mm) | Passing Percentage (%) | ||
---|---|---|---|
Dense Graded Asphalt Mixture | Porous Asphalt Mixture | Cement Concrete | |
19.5 | - | - | 100.0 |
16 | 100 | 100.0 | - |
13.2 | 96.0 | 93.1 | - |
9.5 | 82.1 | 61.1 | 52.6 |
4.75 | 52.2 | 22.0 | 36.8 |
2.36 | 30.9 | 13.2 | 30.4 |
1.18 | 23.0 | 9.6 | 21.2 |
0.6 | 16.9 | 8.0 | 14.8 |
0.3 | 11.0 | 6.9 | 7.2 |
0.15 | 8.4 | 5.8 | 4.1 |
0.075 | 6.8 | 5.1 | - |
Cement | Fly Ash | Sand | Gravel | Water | Water Reducer |
---|---|---|---|---|---|
425 | 75 | 662 | 1127 | 200 | 5 |
DA | PA | CC | FAM-DA | FAM-PA | FAM-CC |
---|---|---|---|---|---|
2.127 | 0.429 | 2.213 | 1.322 | 0.851 | 1.805 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Peng, W.; Xiang, C.; Li, L.; Xie, Q. Neural Network Aided Homogenization Approach for Predicting Effective Thermal Conductivity of Composite Construction Materials. Materials 2023, 16, 3322. https://doi.org/10.3390/ma16093322
Shi Z, Peng W, Xiang C, Li L, Xie Q. Neural Network Aided Homogenization Approach for Predicting Effective Thermal Conductivity of Composite Construction Materials. Materials. 2023; 16(9):3322. https://doi.org/10.3390/ma16093322
Chicago/Turabian StyleShi, Zhu, Wenyao Peng, Chaoqun Xiang, Liang Li, and Qibin Xie. 2023. "Neural Network Aided Homogenization Approach for Predicting Effective Thermal Conductivity of Composite Construction Materials" Materials 16, no. 9: 3322. https://doi.org/10.3390/ma16093322
APA StyleShi, Z., Peng, W., Xiang, C., Li, L., & Xie, Q. (2023). Neural Network Aided Homogenization Approach for Predicting Effective Thermal Conductivity of Composite Construction Materials. Materials, 16(9), 3322. https://doi.org/10.3390/ma16093322