Synthesis and Properties of Sulfur-Containing Organophosphorus Extractants Based on Red Phosphorus, Alkyl Bromides, and Elemental Sulfur
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents Used
2.1.1. Reagents for the Synthesis of Extractants
2.1.2. Extraction Materials
2.2. Equipment and Measurement Methods
2.3. Extraction Procedure
2.4. Synthesis of Extractants
Methods of Synthesis of Extractants
2.5. Spectral and Physicochemical Characteristics of Compounds
2.5.1. Spectral Characteristics of Heptylphosphines 2, Heptylphosphine Oxides 3, and Heptylphosphine Sulfides 4
2.5.2. Spectral and Physicochemical Characteristics of Octylphosphines 2, Octylphosphine Oxides 3, and Octylphosphine Sulfides 4
2.5.3. Spectral Characteristics of the Organic Phases after Extraction
3. Results and Discussion
3.1. Extractant Preparation
3.2. Extraction Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corbridge, D.E.C. Phosphorus: Chemistry, Biochemistry and Technology, 6th ed.; CRC Press: Boca Raton, FL, USA, 2013; ISBN 978-1-4398-4088-7. [Google Scholar]
- van Den Broek, L.; Ottenheijm, H. The Chemistry of Functional Groups. Supplement S: The Chemistry Sulphur-Containing Functional Groups. Recl. Trav. Chim. Pays-Bas 1995, 114, 378. [Google Scholar] [CrossRef]
- Mdeni, N.L.; Adeniji, A.O.; Okoh, A.I.; Okoh, O.O. Analytical Evaluation of Carbamate and Organophosphate Pesticides in Human and Environmental Matrices: A Review. Molecules 2022, 27, 618. [Google Scholar] [CrossRef] [PubMed]
- Wendels, S.; Chavez, T.; Bonnet, M.; Salmeia, K.A.; Gaan, S. Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications. Materials 2017, 10, 784. [Google Scholar] [CrossRef] [PubMed]
- Demkowicz, S.; Rachon, J.; Daśko, M.; Kozak, W. Selected Organophosphorus Compounds with Biological Activity. Applications in Medicine. RSC Adv. 2016, 6, 7101–7112. [Google Scholar] [CrossRef]
- Handley, T.H. A Review of Organic Compounds Containing P==S and p(s)Sh Groups as Separatory and Analytical Reagents. Talanta 1965, 12, 893–901. [Google Scholar] [CrossRef]
- Fu, X.; Xiong, Y.; Shuyun, X.; Shaona, Z.; Zhengshui, H. Study on the Thiophosphinic Extractants. I. The Basic Properties of the Extractants and the Phase Behavior in Their Saponified Systems. Solvent Extr. Ion Exch. 2002, 20, 331–344. [Google Scholar] [CrossRef]
- Bessen, N.; Yan, Q.; Pu, N.; Chen, J.; Xu, C.; Shafer, J. Extraction of the Trivalent Transplutonium Actinides Americium through Einsteinium by the Sulfur Donor Cyanex 301. Inorg. Chem. Front. 2021, 8, 4177–4185. [Google Scholar] [CrossRef]
- Nguyen, V.N.H.; Nguyen, T.H.; Lee, M.S. Review on the Comparison of the Chemical Reactivity of Cyanex 272, Cyanex 301 and Cyanex 302 for Their Application to Metal Separation from Acid Media. Metals 2020, 10, 1105. [Google Scholar] [CrossRef]
- Ritcey, G.M. Solvent Extraction in Hydrometallurgy: Present and Future. Tsinghua Sci. Technol. 2006, 11, 137–152. [Google Scholar] [CrossRef]
- Shyam Sunder, G.S.; Adhikari, S.; Rohanifar, A.; Poudel, A.; Kirchhoff, J. Evolution of Environmentally Friendly Strategies for Metal Extraction. Separations 2020, 7, 4. [Google Scholar] [CrossRef]
- Baker, R.J.; Fuchs, J.; Richards, A.J.; Ogilvie, H.V. Perfluorinated Phosphine Oxide and Sulfides as Extractants for Heavy Metals and Radionuclides. J. Environ. Manag. 2011, 92, 2781–2785. [Google Scholar] [CrossRef] [PubMed]
- Grigorieva, N.A.; Fleitlikh, I.Y. Redox Processes in the Organic Phase during Cobalt Extraction with the Bis(2,4,4-Trimethylpentyl)Dithiophosphinic Acid and Trioctyl Phosphine Oxide Mixtures. Solvent Extr. Ion Exch. 2015, 33, 278–294. [Google Scholar] [CrossRef]
- Ayanda, O.S.; Adekola, F.A.; Baba, A.A.; Ximba, B.J.; Fatoki, O.S. Application of Cyanex Extractant in Cobalt/Nickel Separation Process by Solvent Extraction. Int. J. Phys. Sci. 2013, 8, 89–97. [Google Scholar] [CrossRef]
- Souza, A.G.O.; Aliprandini, P.; Espinosa, D.C.R.; Tenório, J.A.S. Scandium Extraction from Nickel Processing Waste Using Cyanex 923 in Sulfuric Medium. JOM 2019, 71, 2003–2009. [Google Scholar] [CrossRef]
- Capela, R.S.; Paiva, A.P. Extraction of Silver from Concentrated Chloride Solutions: Use of Tri-n-Butyl- and Tri-n-Octylphosphine Sulphides. In Proceedings of the ISEC 2002: International Solvent Extraction Conference, Cape Town, South Africa, 17–21 May 2002; pp. 335–340. [Google Scholar]
- Cecconie, T.; Freiser, H. Extraction of Tervalent Lanthanides as Hydroxide Complexes with Tri-n-Octylphosphine Oxide. Anal. Chem. 1990, 62, 622–625. [Google Scholar] [CrossRef]
- Beltrami, D.; Cote, G.; Mokhtari, H.; Courtaud, B.; Chagnes, A. Modeling of the Extraction of Uranium (VI) from Concentrated Phosphoric Acid by Synergistic Mixtures of Bis-(2-Ethylhexyl)-Phosphoric Acid and Tri-n-Octylphosphine Oxide. Hydrometallurgy 2012, 129–130, 118–125. [Google Scholar] [CrossRef]
- Aly, M.I.; Masry, B.A.; Daoud, J.A. Liquid-Liquid Extraction of Platinum (IV) from Acidic Nitrate Medium Using a Commercial Trialkyl Phosphine Oxide in Kerosene. Sep. Sci. Technol. 2021, 56, 2596–2608. [Google Scholar] [CrossRef]
- Shamsipur, M.; Ghiasvand, A.R.; Yamini, Y. Solid-Phase Extraction of Ultratrace Uranium(VI) in Natural Waters Using Octadecyl Silica Membrane Disks Modified by Tri-n-Octylphosphine Oxide and Its Spectrophotometric Determination with Dibenzoylmethane. Anal. Chem. 1999, 71, 4892–4895. [Google Scholar] [CrossRef]
- Fujinaga, K.; Nakai, Y.; Nakajima, Y.; Oshima, S.; Watanabe, Y.; Komatsu, Y. The Extraction Separation of Sc(III) from a Simulated Solution of Waste Water by Using O,O-Bis(2-Ethylhexyl) Hydrogen Thiophosphate. Solvent Extr. Res. Dev. Jpn. 2018, 25, 1–10. [Google Scholar] [CrossRef]
- Kassem, A.T.; Masry, B.A.; Zeid, M.M.; Noweir, H.G.; Saad, E.A.; Daoud, J.A. Extraction of Palladium from Nitrate Medium by Emulsion Liquid Membrane Containing CYANEX 471X as Carrier. Solvent Extr. Ion Exch. 2017, 35, 145–160. [Google Scholar] [CrossRef]
- Congost, M.A.; Salvatierra, D.; Marquks, G.; Bourdelande, J.L.; Font, J.; Valieinte, M. A Novel Phosphine Sulphide Functionalized Polymer for the Selective Separation of Pd(I1) and Au(II1) from Base Metals. React. Funct. Polym. 1996, 28, 191–200. [Google Scholar] [CrossRef]
- Salvadó, V.; Hidalgo, M.; Masana, A.; Mufioz, M.; Valiente, M.; Muhammed, M. Extraction of Gold Fill) from Hydrochloric Acid Solutions by Tri-Isobutyl Phosphine Sulfide in Toluene. Solvent Extr. Ion Exch. 1990, 8, 491–502. [Google Scholar] [CrossRef]
- Fleitlikh, I.Y.; Grigorieva, N.A.; Pavlenko, N.I.; Kondrasenko, A.A.; Tikhonov, A.Y.; Logutenko, O.A. Synergistic Silver Extraction from Hydrochloric Acid Solutions with Triisobutylphosphine Sulfide in the Presence of Organic Proton-Donor Additives. Solvent Extr. Ion Exch. 2019, 37, 96–109. [Google Scholar] [CrossRef]
- Hubicki, Z.; Hubicka, H. Studies of Extractive Removal of Silver (I) from Nitrate Solutions by Cyanex 471 X. Hydrometallurgy 1995, 37, 207–219. [Google Scholar] [CrossRef]
- Reddy, B.; Rao, S.; Priya, D. Selective Separation and Recovery of Divalent Cd and Ni from Sulphate Solutions with Mixtures of TOPS 99 and Cyanex 471 X. Sep. Purif. Technol. 2008, 59, 214–220. [Google Scholar] [CrossRef]
- Gotfryd, L.; Cox, M. The Selective Recovery of Cadmium(II) from Sulfate Solutions by a Counter-Current Extraction–Stripping Process Using a Mixture of Diisopropylsalicylic Acid and Cyanex® 471X. Hydrometallurgy 2006, 81, 226–233. [Google Scholar] [CrossRef]
- Francis, T.; Prasada Rao, T.; Reddy, M.L.P. Cyanex 471X as Extractant for the Recovery of Hg(II) from Industrial Wastes. Hydrometallurgy 2000, 57, 263–268. [Google Scholar] [CrossRef]
- Bhandare, A.A.; Argekar, A.P. Transport of Mercury(II) Ion through a Supported Liquid Membrane Containing a Triisobutylphosphine Sulfide (Cyanex 471X) as a Mobile Carrier. J. Chem. Technol. Biotechnol. 2002, 77, 811–816. [Google Scholar] [CrossRef]
- Mercader-Trejo, F.; Herrera-Basurto, R.; de San Miguel, E.R.; de Gyves, J. Mercury Determination in Sediments by CVAAS after on Line Preconcentration by Solid Phase Extraction with a Sol-Gel Sorbent Containing CYANEX 471X®. Int. J. Environ. Anal. Chem. 2011, 91, 1062–1076. [Google Scholar] [CrossRef]
- Li, D.; Wang, C. Solvent Extraction of ScandiumžIII/ by Cyanex 923 and Cyanex 925. Hydrometallurgy 1998, 48, 301–312. [Google Scholar] [CrossRef]
- Ilyas, S.; Kim, H.; Ranjan Srivastava, R. Extraction Equilibria of Cerium(IV) with Cyanex 923 Followed by Precipitation Kinetics of Cerium(III) Oxalate from Sulfate Solution. Sep. Purif. Technol. 2021, 254, 117634. [Google Scholar] [CrossRef]
- Nguyen, T.; Lee, M. A Review on the Separation of Lithium Ion from Leach Liquors of Primary and Secondary Resources by Solvent Extraction with Commercial Extractants. Processes 2018, 6, 55. [Google Scholar] [CrossRef]
- Sanda, O.; Tinubu, A.C.; Taiwo, E.A. Recovery of Iron from EAF Smelter Slags via Hydrochloric Acid Leaching and Solvent Extraction Using Trioctyl Phosphine Oxide. Sep. Sci. Technol. 2021, 56, 1026–1034. [Google Scholar] [CrossRef]
- Platt, A.W.G. Lanthanide Phosphine Oxide Complexes. Coord. Chem. Rev. 2017, 340, 62–78. [Google Scholar] [CrossRef]
- Duche, S.N.; Dhadke, P.M. Extraction of Palladium(II) with Cyanex-923 and Cyanex-471X from Bromide Media and Its Separation from Pt(IV), Rh(III) and Ir(III). J. Chin. Chem. Soc. 2001, 48, 1115–1122. [Google Scholar] [CrossRef]
- Bessen, N.P.; Jackson, J.A.; Jensen, M.P.; Shafer, J.C. Sulfur Donating Extractants for the Separation of Trivalent Actinides and Lanthanides. Coord. Chem. Rev. 2020, 421, 213446. [Google Scholar] [CrossRef]
- Chrzanowski, J.; Krasowska, D.; Drabowicz, J. Synthesis of optically active tertiary phosphine oxides: A historical overview and the latest advances. Heteroat. Chem. 2019, 29, e21476. [Google Scholar] [CrossRef]
- Gusarova, N.K.; Trofimov, B.A. Organophosphorus Chemistry Based on Elemental Phosphorus: Advances and Horizons. Russ. Chem. Rev. 2020, 89, 225–249. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Gusarova, N.K. Elemental Phosphorus in Strongly Basic Media as Phosphorylating Reagent: A Dawn of Halogen-Free ‘Green’ Organophosphorus Chemistry. Mendeleev Commun. 2009, 19, 295–302. [Google Scholar] [CrossRef]
- RussianGost|Official Regulatory Library—PND F 14.1:2.44-96. Available online: https://www.russiangost.com/p-162178-pnd-f-141244-96.aspx (accessed on 27 September 2022).
- RussianGost|Official Regulatory Library—GOST 18293-72. Available online: https://www.russiangost.com/p-71847-gost-18293-72.aspx (accessed on 27 September 2022).
- RussianGost|Official Regulatory Library—PND F 14.1:2.46-96. Available online: https://www.russiangost.com/p-162180-pnd-f-141246-96.aspx (accessed on 27 September 2022).
- van Hooijdonk, M.C.J.M. Synthesis of Phosphines from Elemental Phosphorus; Universiteit Utrecht, Faculteit Scheikunde: Utrecht, The Netherlands, 1999; ISBN 978-90-393-1990-1. [Google Scholar]
- Gusarova, N.K.; Sutyrina, A.O.; Kuimov, V.A.; Malysheva, S.F.; Belogorlova, N.A.; Volkov, P.A.; Trofimov, B.A. Single-Stage Synthesis of Alkyl-H-Phosphinic Acids from Elemental Phosphorus and Alkyl Bromides. Mendeleev Commun. 2019, 29, 328–330. [Google Scholar] [CrossRef]
- Verkhoturova, S.I.; Arbuzova, S.N.; Kazantseva, T.I.; Gusarova, N.K.; Trofimov, B.A. Phosphorylation of Alkyl Methanesulfonates with Elemental Phosphorus in a Strongly Basic Medium: Synthesis of Alkylphosphinic Acids. Russ. J. Gen. Chem. 2017, 87, 1876–1878. [Google Scholar] [CrossRef]
- Kosolapoff, G.M.; Maier, L. Organic Phosphorus Compounds; Wiley: Hoboken, NJ, USA, 1972; ISBN 978-0-471-50442-9. [Google Scholar]
- Evans, C.M.; Evans, M.E.; Krauss, T.D. Mysteries of TOPSe Revealed: Insights into Quantum Dot Nucleation. J. Am. Chem. Soc. 2010, 132, 10973–10975. [Google Scholar] [CrossRef]
- Ruberu, T.P.A.; Albright, H.R.; Callis, B.; Ward, B.; Cisneros, J.; Fan, H.J.; Vela, J. Molecular Control of the Nanoscale: Effect of Phosphine–Chalcogenide Reactivity on CdS–CdSe Nanocrystal Composition and Morphology. ACS Nano 2012, 6, 5348–5359. [Google Scholar] [CrossRef]
Mass Content, % | ||||||
---|---|---|---|---|---|---|
Sulfur | Ash | Acids in Terms of Sulfuric Acid | Organic Substances | Arsenic | Selenium | Water |
99.98 | 0.0015 | 0.00045 | 0.0045 | - | - | 0.013 |
No. Experiment | Pn, mol (g) | AlkBr, 1a,b mol (g) | S, mol (g) | Temperature, °C | Time, h | Conversion, % | Content in the Mixture, % b | ||
---|---|---|---|---|---|---|---|---|---|
Pn | AlkBr | Phosphine Oxides c 3 | Phosphine Sulfides c 4 | ||||||
1 | 0.2 (6.2) | C7H15Br 0.1 (17.01) | 0.02 (0.7) | 105–110 | 5 | 100 | 69 | 42 (3a,b,c) | 58 (4a,b,c) |
2 | 0.1 (3.1) | C8H17Br 0.05 (9.66) | - | 105–110 | 6 | 100 | 77 | 40 (3d,e,f) | - |
3 | 0.1 (3.1) | C8H17Br 0.05 (9.66) | 0.01 (0.35) | 105–110 | 6 | 96 | 100 | 43 (3d,e,f) | 57 (4d,e,f) |
4 | 0.1 (3.1) | C8H17Br 0.1 (19.31) | - | 90–94 | 5 | 80 | 24 | 41 (3d,e,f) | - |
5 | 0.1 (3.1) | C8H17Br 0.15 (28.97) | 0.01 (0.35) | 105–110 | 8 | 61 | 49 | 99 (3d,e,f) | - |
6 | 0.1 (3.1) | C8H17Br 0.175 (33.80) | 0.02 (0.7) | 100–105 | 5 | 85 | 42 | 52 (3d) d | 37 (4d) |
7 | 0.1 (3.1) | C8H17Br 0.03 (5.79) | 0.01 (0.35) | 100–105 | 5 | 100 | 100 | 22 (3d,e,f) d | 18 (4d,e,f) |
Extractant | Degree of Extraction E, % | ||||
---|---|---|---|---|---|
Ni(II) | Co(II) | Zn(II) | Pb(II) | Ag(I) | |
3a,b, 4a,b | 99.99 | 99.98 | 99.95 | 99.90 | 99.56 |
3d,e, 4d,e | 99.99 | 99.99 | 99.98 | 99.94 | 99.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bishimbayeva, G.K.; Gusarova, N.K.; Nalibayeva, A.M.; Verkhoturova, S.I.; Bold, A.; Chernysheva, N.A.; Zhangabayeva, A.K.; Arbuzova, S.N.; Abdikalykov, Y.N.; Zhumabayeva, D.S. Synthesis and Properties of Sulfur-Containing Organophosphorus Extractants Based on Red Phosphorus, Alkyl Bromides, and Elemental Sulfur. Materials 2023, 16, 3394. https://doi.org/10.3390/ma16093394
Bishimbayeva GK, Gusarova NK, Nalibayeva AM, Verkhoturova SI, Bold A, Chernysheva NA, Zhangabayeva AK, Arbuzova SN, Abdikalykov YN, Zhumabayeva DS. Synthesis and Properties of Sulfur-Containing Organophosphorus Extractants Based on Red Phosphorus, Alkyl Bromides, and Elemental Sulfur. Materials. 2023; 16(9):3394. https://doi.org/10.3390/ma16093394
Chicago/Turabian StyleBishimbayeva, Gaukhar K., Nina K. Gusarova, Arailym M. Nalibayeva, Svetlana I. Verkhoturova, Amangul Bold, Natalya A. Chernysheva, Assem K. Zhangabayeva, Svetlana N. Arbuzova, Yerlan N. Abdikalykov, and Dinara S. Zhumabayeva. 2023. "Synthesis and Properties of Sulfur-Containing Organophosphorus Extractants Based on Red Phosphorus, Alkyl Bromides, and Elemental Sulfur" Materials 16, no. 9: 3394. https://doi.org/10.3390/ma16093394
APA StyleBishimbayeva, G. K., Gusarova, N. K., Nalibayeva, A. M., Verkhoturova, S. I., Bold, A., Chernysheva, N. A., Zhangabayeva, A. K., Arbuzova, S. N., Abdikalykov, Y. N., & Zhumabayeva, D. S. (2023). Synthesis and Properties of Sulfur-Containing Organophosphorus Extractants Based on Red Phosphorus, Alkyl Bromides, and Elemental Sulfur. Materials, 16(9), 3394. https://doi.org/10.3390/ma16093394