Characterization of Volcano-Sedimentary Rocks and Related Scraps for Design of Sustainable Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Volcanic Products
2.2. Chemical and Physical Characterization
2.3. Thermal Characterization
3. Results
3.1. Chemical and Physical Characterization
3.1.1. Particle Grain Size Analysis
3.1.2. Chemical and Mineralogical Analyses
3.1.3. pH, Specific Conductivity and Density
3.1.4. SEM Analysis
- A wide grain size range between 20 and 400 μm;
- Low mutual densification between particles;
- Particles with irregular shapes and jagged edges;
- High interparticle porosity regardless of particle size.
- A high proportion of particles with sizes in the range 100–200 micron;
- Particles with a more regular shape than those of the lapillus sample;
- Greater interparticle thickening;
- Presence of non-porous glassy zones (circled in Figure 11b) corresponding to the vitreous fraction detected by XRD (79.7%).
3.2. Thermal Characterization
3.2.1. Thermogravimetric and Differential Thermal Analysis (TGA/DTA)
- Up to a temperature of about 200 °C, there was a loss of moisture resulting in a loss of about 0.5% of the initial weight;
- Between 500 °C and 1000 °C, substantial stability of the material was noted during heating;
- Around 1200 °C, there was an endothermic peak due to the melting of the crystalline lattice constituting the material, which as confirmed by the mineralogical analysis data, has an exclusively crystalline microstructure (approx. 87%).
- Up to a temperature of about 200 °C, there was a loss of moisture;
- Between 400 °C and 500 °C, there was a loss of reticular water most probably related to biotite;
- Around 1200 °C, there was an endothermic peak due to the melting of the crystalline phases.
3.2.2. Hot Stage Microscopy
- Sintering temperature: the temperature at which the sample is reduced by about 5% and the sintering process of the grains begins;
- Softening temperature: the temperature at which the sample takes on a plastic character, and both the upper profile and the edges tend to round off;
- Sphere temperature: the temperature at which the height and width have the same magnitude, resulting in a spherical shape;
- Semi-sphere temperature: the temperature at which the width of the sample reaches dimensions twice as large as the height;
- Melting temperature: the temperature at which the width of the sample is three times its height.
4. Discussion
5. Conclusions
- Due to the lightness of the volcanic products, they can be used in the design and preparation of lightweight aggregates useful for agronomic purposes or in the construction field;
- Due to their aluminosilicate nature together with the presence of an amorphous fraction, pumice and lapillus can play the role of precursor for geopolymer preparation;
- Zeolitic tuff can be exploited for flue gas treatment, which is made possible by its porous nature and open structures with high surface areas;
- Due to the presence of feldspathic phase (sanidine), volcanic debris can be used in tile production as the melting component. Thanks to its pozzolanic activity and calcium content it could also be used in binders as supplementary cementitious material or as aggregate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Poyraz, H.B.; Erginel, N.; Ay, N. The use of pumice (pumicite) in transparent roof tile glaze composition. J. Eur. Ceram. Soc. 2006, 26, 741–746. [Google Scholar] [CrossRef]
- Öztürk, Z.B.; Gültekin, E.E. Determination of the Effect of the Addition of Pumice on the Technological Properties of Wall Tile Using the Factorial Design Method. J. Adv. Ceram. Sc. Eng. ACSE 2014, 3, 1–10. [Google Scholar] [CrossRef]
- Mboya, H.A.; Makunza, J.; Mwishwa, Y.H.B. Assessment of Pumice Blocks in Comparison to Cement Sand Blocks and Burnt Blocks ‘The Case of Mbeya City-Tanzania’. J. Civ. Eng. Res. Pract. 2011, 8, 43–55. [Google Scholar] [CrossRef]
- Gencel, O. Characteristics of fired clay bricks with pumice additive. Energy Build. 2015, 102, 217–224. [Google Scholar] [CrossRef]
- Eksi, M.; Sevgi, O.; Akburak, S.; Yurtseven, H.; Esin, I. Assessment of recycled or locally available materials as green roof substrates. Ecol. Eng. 2020, 156, 105966. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.T.; Zafeiriou, S.; Londra, P.A. Plant growth of Atriplex portulacoides affected by irrigation amount and substrate type in an extensive green roof system. Ecol. Eng. 2021, 165, 106223. [Google Scholar] [CrossRef]
- Righi, C.; Barbieri, F.; Sgarbi, E.; Maistrello, L.; Bertacchini, A.; Andreola, F.N.; D’angelo, A.; Catauro, M.; Barbieri, L. Suitability of Porous Inorganic Materials from Industrial Residues and Bioproducts for Use in Horticulture: A Multidisciplinary Approach. Appl. Sci. 2022, 12, 5437. [Google Scholar] [CrossRef]
- Kong, C.; Camps-Arbestain, M.; Clothier, B.; Bishop, P.; Vázquez, F.M. Reclamation of salt-affected soils using pumice and algal amendments: Impact on soil salinity and the growth of lucerne. Environ. Technol. Innov. 2021, 24, 101867. [Google Scholar] [CrossRef]
- Rashad, A.M. A short manual on natural pumice as a lightweight aggregate. J. Build. Eng. 2019, 25, 100802. [Google Scholar] [CrossRef]
- Altimari, F.; Lancellotti, I.; Leonelli, C.; Andreola, F.; Elsayed, H.; Bernardo, E.; Barbieri, L. Green materials for construction industry from Italian volcanic quarry scraps. Mater. Lett. 2023, 333, 133615. [Google Scholar] [CrossRef]
- Occhipinti, R.; Stroscio, A.; Finocchiaro, C.; Fugazzotto, M.; Leonelli, C.; Faro, M.J.L.; Megna, B.; Barone, G.; Mazzoleni, P. Alkali activated materials using pumice from the Aeolian Islands (Sicily, Italy) and their potentiality for cultural heritage applications: Preliminary study. Constr. Build. Mater. 2020, 259, 120391. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Magbool, H.M.; Tayeh, B.A.; de Azevedo, A.R.G.; Abutaleb, A.; Hussain, Q. Production of geopolymer concrete by utilizing volcanic pumice dust. Case Stud. Constr. Mater. 2022, 16, e00802. [Google Scholar] [CrossRef]
- Pungrasmi, W.; Phinitthanaphak, P.; Powtongsook, S. Nitrogen removal from a recirculating aquaculture system using a pumice bottom substrate nitrification-denitrification tank. Ecol. Eng. 2016, 95, 357–363. [Google Scholar] [CrossRef]
- de Rozari, P.; Krisnayanti, D.S.; Refli; Yordanis, K.V.; Atie, M.R.R. The use of pumice amended with sand media for domestic wastewater treatment in vertical flow constructed wetlands planted with lemongrass (Cymbopogon citratus). Heliyon 2021, 7, e07423. [Google Scholar] [CrossRef]
- Omidinia-Anarkoli, T.; Shayannejad, M. Improving the quality of stabilization pond effluents using hybrid constructed wetlands. Sci. Total. Environ. 2021, 801, 149615. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.europomice.it (accessed on 28 February 2023).
- Piccolo, F.; Gallo, F.; Andreola, F.; Lancellotti, I.; Maggi, B.; Barbieri, L. Preliminary study on valorisation of scraps from the extraction of volcanic minerals. Environ. Eng. Manag. J. 2021, 20, 1597–1608. [Google Scholar]
- Li, Y.; Xia, G.; Wu, Q.; Chen, W.; Lin, W.; Zhang, Z.; Chen, Y.; Chen, T.; Siddique, K.H.; Chi, D. Zeolite increases grain yield and potassium balance in paddy fields. Geoderma 2022, 405, 115397. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, G.; Wang, S.; Xia, G.; Chen, T.; Chen, Y.; Siddique, K.H.M.; Chi, D. Zeolite enhances phosphorus accumulation, translocation, and partitioning in rice under alternate wetting and drying. Field Crop. Res. 2022, 286, 108632. [Google Scholar] [CrossRef]
- Campisi, T.; Abbondanzi, F.; Faccini, B.; Di Giuseppe, D.; Malferrari, D.; Coltorti, M.; Laurora, A.; Passaglia, E. Ammonium-charged zeolitite effects on crop growth and nutrient leaching: Greenhouse experiments on maize (Zea mays). Catena 2016, 140, 66–76. [Google Scholar] [CrossRef]
- Noviello, M.; Gattullo, C.E.; Faccia, M.; Paradiso, V.M.; Gambacorta, G. Application of natural and synthetic zeolites in the oenological field. Food Res. Int. 2021, 150, 110737. [Google Scholar] [CrossRef]
- Jarosz, R.; Szerement, J.; Gondek, K.; Mierzwa-Hersztek, M. The use of zeolites as an addition to fertilisers—A review. J. Build. Eng. 2022, 213, 106125. [Google Scholar] [CrossRef]
- Lancellotti, I.; Toschi, T.; Passaglia, E.; Barbieri, L. Release of agronomical nutrient from zeolitite substrate containing phosphatic waste. Environ. Sci. Pollut. Res. 2014, 21, 13237–13242. [Google Scholar] [CrossRef] [PubMed]
- Shahkolaie, S.S.; Baranimotlagh, M.; Dordipour, E.; Khormali, F. Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. S. Afr. J. Bot. 2020, 128, 132–140. [Google Scholar] [CrossRef]
- Boostani, H.R.; Hardie, A.G.; Najafi-Ghiri, M. Lead stabilization in a polluted calcareous soil using cost-effective biochar and zeolite amendments after spinach cultivation. Pedosphere 2022, 33, 321–330. [Google Scholar] [CrossRef]
- Uzun, O.; Gokalp, Z.; Irik, H.A.; Varol, I.S.; Kanarya, F.O. Zeolite and pumice-amended mixtures to improve phosphorus removal efficiency of substrate materials from wastewaters. J. Clean. Prod. 2021, 317, 128444. [Google Scholar] [CrossRef]
- Rahul, P.; Ravella, D.P.; Rao, P.C.S. Durability assessment of Self-Curing high performance concretes containing zeolite admixture. Mater. Today Proc. 2022, 60, 502–507. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, K.; Gao, S.; Wang, F.; Wu, Z. Effect of pozzolanic reaction of zeolite on its internal curing performance in cement-based materials. J. Build. Eng. 2023, 63, 105503. [Google Scholar] [CrossRef]
- Nascetti, G.; Baiocchi, A.; Lotti, F.; Piscopo, V.; Valletta, M. Censimento e selezione dei geositi della provincia di Viterbo, Dipartimento Di Ecologia e Sviluppo Economico Sostenibile (DECOS). Università Degli Studi Della Tuscia. 2010. Available online: https://www.yumpu.com/it/document/view/10585824/censimento-e-selezione-dei-geositi-della-provincia-di-viterbo (accessed on 28 February 2023).
- Mourhly, A.; Khachani, M.; El Hamidi, A.; Kacimi, M.; Halim, M.; Arsalane, S. The Synthesis and Characterization of Low-Cost Mesoporous Silica SiO2 from Local Pumice Rock. Nanomater. Nanotechnol. 2015, 5, 35. [Google Scholar] [CrossRef]
- Ersoy, B.; Sariisik, A.; Dikmen, S.; Sariisik, G. Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technol. 2010, 197, 129–135. [Google Scholar] [CrossRef]
- Colombani, N.; Mastrocicco, M.; Di Giuseppe, D.; Faccini, B.; Coltorti, M. Variation of the hydraulic properties and solute transport mechanisms in a silty-clay soil amended with natural zeolites. Catena 2014, 123, 195–204. [Google Scholar] [CrossRef]
- Varela-Gandía, F.J.; Berenguer-Murcia, A.; Lozano-Castelló, D.; Cazorla-Amorós, D. Zeolite A/carbon membranes for H2 purification from a simulated gas reformer mixture. J. Membr. Sci. 2011, 378, 407–414. [Google Scholar] [CrossRef]
- Ackley, M.W.; Rege, S.U.; Saxena, H. Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 2003, 61, 25–42. [Google Scholar] [CrossRef]
- de Magalhães, L.F.; da Silva, G.R.; Peres, A.E.C. Zeolite Application in Wastewater Treatment. Adsorpt. Sci. Technol. 2022, 2022, 4544104. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Guimarães, J.D.J.; de Sousa, F.G.G.; Román, R.M.S.; Pai, A.D.; Rodrigues, S.A.; Sarnighausen, V.C.R. Effect of irrigation water pH on the agronomic development of hops in protected cultivation. Agric. Water Manag. 2021, 253, 106924. [Google Scholar] [CrossRef]
- Pınarcı, I.; Kocak, Y. Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Constr. Build. Mater. 2022, 335, 127528. [Google Scholar] [CrossRef]
- Szabó, R.; Kristály, F.; Nagy, S.; Singla, R.; Mucsi, G.; Kumar, S. Reaction, structure and properties of eco-friendly geopolymer cement derived from mechanically activated pumice. Ceram. Int. 2023, 49, 6756–6763. [Google Scholar] [CrossRef]
- Ulusu, H.; Aruntaş, H.Y.; Gültekin, A.B.; Dayı, M.; Çavuş, M.; Kaplan, G. Mechanical, durability and microstructural characteristics of Portland pozzolan cement (PPC) produced with high volume pumice: Green, cleaner and sustainable cement development. Constr. Build. Mater. 2023, 378, 131070. [Google Scholar] [CrossRef]
- Font, A.; Soriano, L.; Reig, L.; Tashima, M.; Borrachero, M.; Monzó, J.; Payá, J. Use of residual diatomaceous earth as a silica source in geopolymer production. Mater. Lett. 2018, 223, 10–13. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer International Conference; Davidovits, J., Davidovits, R., James, C., Eds.; Open Access Library Journal: Saint Quentin, France, 1999; pp. 9–39. [Google Scholar]
- Costa, L.M.; Almeida, N.G.S.; Houmard, M.; Cetlin, P.R.; Silva, G.J.B.; Aguilar, M.T.P. Influence of the addition of amorphous and crystalline silica on the structural properties of metakaolin-based geopolymers. Appl. Clay Sci. 2021, 215, 106312. [Google Scholar] [CrossRef]
- Fonderie Cooperative di Modena; Universita’ Degli Studi di Modena e Reggio Emilia. Plant and Procedure for the Abatement of Pollutants on a Gaseous Stream. Italian Patent N. 102020000002701, 7 February 2022. [Google Scholar]
Mineralogical Phase | Lapillus | Pumice | Zeolitic Tuff | Arlena Sand | Tessennano Sand |
---|---|---|---|---|---|
Amorphous | 16.1 | 79.7 | 11.0 | 61.7 | 78.2 |
Quartz (SiO2) | - | 1.1 | 1.0 | 3.5 | 2.0 |
Sanidine (K,Na)(Si,Al)4O8 | 19.8 | 11.2 | - | 18.2 | 16.0 |
Anorthite (CaAl2Si2O8) | 26.4 | 3.0 | - | 3.2 | 3.0 |
Biotite (K(Mg,Fe2+)3(AlSi3O10(OH,F)2) | - | - | 6.0 | 0.5 | 0.8 |
Chabazite (Ca,Na2,K2,Mg)Al2Si4O12∙6H2O | - | - | 54.0 | 9.4 | - |
Phyllipsite (Ca,Na2,K2)Al6Si10O32∙12H2O | - | - | 6.0 | - | - |
Analcime (NaAlSi2O6∙H2O) | 6.1 | 0.6 | 1.0 | 1.0 | - |
Pyroxenes | - | - | 2.0 | - | - |
Feldspars | - | - | 19 | - | - |
Diopside (CaMgSi2O6) | 19.0 | - | - | 2.5 | - |
Muscovite (KAl2(Si3Al)O10(OH,F)2) | - | 3.8 | - | - | - |
Phlogopite (KMg3(Si3Al)O10(F,OH)2) | - | 0.6 | - | - | - |
Hematite (Fe2O3) | 4.9 | - | - | - | - |
Plagioclase (Na,Ca)(Si,Al)4O8 | 5.8 | - | - | - | - |
Mica X2Y4–6Z8O20(OH,F)4 | 1.9 | - | - | - | - |
Samples | True Density (kg/m3) | Bulk Density (kg/m3) |
---|---|---|
Lapillus | 2843.8 ± 0.6 | 750–1150 |
Pumice | 2579.3 ± 1.6 | 480–880 |
Zeolitic tuff | 2284.3 ± 1.1 | 700–1000 |
Arlena sand | 2475.0 ± 0.8 | 900–1100 |
Tessennano sand | 2435.2 ± 1.0 | 900–1100 |
Average Chemical Composition (EDS) | Lapillus (Crystalline Zone) | Pumice (Crystalline Zone) | Pumice (Amorphous Zone) |
---|---|---|---|
O | 53.9% | 52.6% | 61.7% |
Si | 19.8% | 21.5% | 16.4% |
Al | 8.9% | 9.4% | 6.5% |
Fe | 5.8% | 3.9% | 2.7% |
K | 2.6% | 3.7% | 0.3% |
Na | 2.6% | 2.8% | Traces |
Mg | 1.3% | 1.6% | 4.8% |
Ti | 0.5% | 0.5% | 0.4% |
Ca | - | 4.5% | 7.2% |
P | 0.3% | - | - |
Samples | T Sintering (°C) | T Softening (°C) | T Sphere (°C) | T Semi-Sphere (°C) | T Melting (°C) |
---|---|---|---|---|---|
Lapillus | 1132 | 1181 | n.a. | n.a. | 1224 |
Pumice | 972 | 1004 | n.a. | 1274 | 1319 |
Zeolitic tuff | 949 | 1144 | n.a. | 1245 | 1314 |
Arlena sand | 970 | 1210 | n.a. | 1298 | 1341 |
Tessennano sand | 1033 | 1227 | n.a. | 1307 | 1347 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbieri, L.; Altimari, F.; Andreola, F.; Maggi, B.; Lancellotti, I. Characterization of Volcano-Sedimentary Rocks and Related Scraps for Design of Sustainable Materials. Materials 2023, 16, 3408. https://doi.org/10.3390/ma16093408
Barbieri L, Altimari F, Andreola F, Maggi B, Lancellotti I. Characterization of Volcano-Sedimentary Rocks and Related Scraps for Design of Sustainable Materials. Materials. 2023; 16(9):3408. https://doi.org/10.3390/ma16093408
Chicago/Turabian StyleBarbieri, Luisa, Fabiana Altimari, Fernanda Andreola, Bruno Maggi, and Isabella Lancellotti. 2023. "Characterization of Volcano-Sedimentary Rocks and Related Scraps for Design of Sustainable Materials" Materials 16, no. 9: 3408. https://doi.org/10.3390/ma16093408
APA StyleBarbieri, L., Altimari, F., Andreola, F., Maggi, B., & Lancellotti, I. (2023). Characterization of Volcano-Sedimentary Rocks and Related Scraps for Design of Sustainable Materials. Materials, 16(9), 3408. https://doi.org/10.3390/ma16093408