Synergistic Effect of P Doping and Mo-Ni-Based Heterostructure Electrocatalyst for Overall Water Splitting
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of P[xmM]-MoS2/Ni3S2@NF and MoS2/Ni3S2@NF
2.2. Preparation of MoS2@NF
2.3. Preparation of Ni3S2@NF
3. Results and Discussion
3.1. Phase and Structural Analyses of P-MoS2/Ni3S2@NF
3.2. Electrocatalytic HER Activity
3.3. Electrocatalytic OER Activity
3.4. Overall Water-Splitting Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, K.L.; Wang, Y.T.; Yang, S.Z.; Huang, J.F.; Zou, Z.H.; Pan, H.R.; Shinde, P.S.; Pan, S.L.; Huang, J.; Xu, C.L. Bonding interface boosts the intrinsic activity and durability of NiSe@Fe2O3 heterogeneous electrocatalyst for water oxidation. Sci. Bull. 2021, 66, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.W.; Li, Y.; Zhang, J.J.; Ai, T.T.; Yang, C.M.; Feng, L.L. Interface engineering of the NiCo2O4@MoS2/TM heterostructure to realize the efficient alkaline oxygen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 12176–12184. [Google Scholar] [CrossRef]
- Zhang, J.J.; Li, M.Y.; Li, X.; Bao, W.W.; Jin, C.Q.; Feng, X.H.; Liu, G.; Yang, C.M.; Zhang, N.N. Chromium-modified ultrathin CoFe LDH as high-efficiency electrode for hydrogen evolution reaction. Nanomaterials 2022, 12, 1227. [Google Scholar] [CrossRef]
- Wang, H.M.; Gao, X.L.; Lv, Z.C.; Abdelilah, T.; Lei, A.W. Recent advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev. 2019, 119, 6769–6787. [Google Scholar] [CrossRef]
- Wang, C.; Shang, H.Y.; Xu, H.; Du, Y.K. Nanoboxes endow non-noble-metal-based electrocatalysts with high efficiency for overall water splitting. J. Mater. Chem. A 2021, 9, 857–874. [Google Scholar] [CrossRef]
- Li, L.; Yang, Y.; Wang, Y.W.; Liang, M.L.; Huang, Y.X. Electrochemical activity of layered double hydroxides supported nano Pt clusters toward methanol oxidation reaction in alkaline solutions. J. Mater. Res. Technol. 2020, 9, 5463–5473. [Google Scholar] [CrossRef]
- Song, J.J.; Wei, C.; Huang, Z.F.; Liu, C.T.; Zeng, L.; Wang, X.; Xu, Z.J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.H.; Liu, S.H.; Zhuang, X.D.; Feng, X.L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. 2016, 128, 6814–6819. [Google Scholar] [CrossRef]
- Bao, W.W.; Yang, C.M.; Ai, T.T.; Zhang, J.J.; Zhou, L.H.; Li, Y.; Wei, X.L.; Zou, X.Y.; Wang, Y. Modulating interfacial charge distribution of NiSe nanoarrays with NiFe-LDH nanosheets for boosting oxygen evolution reaction. Fuel 2023, 332, 126227. [Google Scholar] [CrossRef]
- Zhou, Q.S.; Yao, Z.J.; Wang, H.H.; Yang, J.F.; Zhang, Y.H.; Qian, L.W.; Zhang, S.F. Interface engineering of NixSy@MoS2 heterostructured nanorods as high-efficient electrocatalysts for water splitting. Int. J. Hydrogen Energy 2021, 46, 35077–35087. [Google Scholar] [CrossRef]
- Pataniya, P.M.; Late, D.; Sumesh, C.K. Photosensitive WS2/ZnO nano-heterostructure-based electrocatalysts for hydrogen evolution reaction. ACS Appl. Energy Mater. 2021, 4, 755–762. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Q.Q.; Xiao, Z.H.; Li, X.Y.; Huo, J.; Wang, S.Y.; Dai, L.M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. 2016, 128, 5363–5367. [Google Scholar] [CrossRef]
- Zou, X.Y.; Wei, X.L.; Bao, W.W.; Zhang, J.J.; Jiang, P.; Ai, T.T. Local electronic structure modulation of NiVP@NiFeV-LDH electrode for high-efficiency oxygen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 32385–32393. [Google Scholar] [CrossRef]
- Yan, H.J.; Xie, Y.; Wu, A.P.; Cai, Z.C.; Wang, L.; Tian, C.G.; Zhang, X.M.; Fu, H.G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, F.; Long, X.; Yu, X.X.; Qu, K.G.; Yang, Z.H. N, P doped carbon nanotubes confined WN-Ni Mott-Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries. Appl. Catal. B Environ. 2021, 298, 120511. [Google Scholar] [CrossRef]
- Zhang, H.J.; Maijenburg, A.W.; Li, X.P.; Schweizer, S.L.; Wehrspohn, R.B. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 2020, 30, 2003261. [Google Scholar] [CrossRef]
- Kannichankandy, D.; Pataniya, P.M.; Sumesh, C.K.; Solanki, G.K.; Pathak, V.M. WSe2-PANI nanohybrid structure as efficient electrocatalyst for photo-enhanced hydrogen evolution reaction. J. Alloys Compd. 2021, 876, 160179. [Google Scholar] [CrossRef]
- Jing, F.; Lv, Q.Y.; Xiao, J.; Wang, Q.J.; Wang, S. Highly active and dual-function self-supported multiphase NiS–NiS2–Ni3S2/NF electrodes for overall water splitting. J. Mater. Chem. A 2018, 6, 14207–14214. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, F.Q.; Yang, Y.; Zhang, Y.B.; He, H.L.; Huang, X.F.; Fan, X.J.; Zhang, X.M. (003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Appl. Catal. B Environ. 2019, 243, 693–702. [Google Scholar] [CrossRef]
- Feng, L.L.; Yu, G.T.; Wu, Y.Y.; Li, G.D.; Li, H.; Sun, Y.H.; Asefa, T.; Chen, W.; Zou, X.X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.X.; Yue, X.Y.; Zhang, W.T.; Yu, S.X.; Zhang, Y.H.; Wang, J.; Wang, J.L. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, T.F.; Jørgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Sorribes, I.; Liu, L.C.; Doménech-Carbó, A.; Corma, A. Nanolayered cobalt–molybdenum sulfides as highly chemo-and regioselective catalysts for the hydrogenation of quinoline derivatives. ACS Catal. 2018, 8, 4545–4557. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Zhang, K.; Lin, H.L.; Li, X.; Chan, H.C.; Yang, L.C.; Gao, Q.S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366. [Google Scholar] [CrossRef]
- Li, F.; Zhang, D.F.; Xu, R.C.; Fu, W.F.; Lv, X.J. Superhydrophilic heteroporous MoS2/Ni3S2 for highly efficient electrocatalytic overall water splitting. ACS Appl. Energy Mater. 2018, 1, 3929–3936. [Google Scholar] [CrossRef]
- Gu, J.X.; Magagula, S.; Zhao, J.X.; Chen, Z.F. Boosting ORR/OER activity of graphdiyne by simple heteroatom doping. Small Methods 2019, 3, 1800550. [Google Scholar] [CrossRef]
- Zou, X.X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Qu, Y.J.; Yang, M.Y.; Chai, J.W.; Tang, Z.; Shao, M.M.; Kwok, C.T.; Yang, M.; Wang, Z.Y.; Chua, D.; Wang, S.J.; et al. Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 5959–5967. [Google Scholar] [CrossRef]
- Xue, J.Y.; Li, F.L.; Zhao, Z.Y.; Li, C.; Ni, C.Y.; Gu, H.W.; Braunstein, P.; Huang, X.Q.; Lang, J.P. A hierarchically-assembled Fe-MoS2/Ni3S2/nickel foam electrocatalyst for efficient water splitting. Dalton Trans. 2019, 48, 12186–12192. [Google Scholar] [CrossRef]
- Du, X.Q.; Ma, G.Y.; Zhang, X.S. Cobalt and nitrogen Co-doped Ni3S2 nanoflowers on nickel foam as high-efficiency electrocatalysts for overall water splitting in alkaline media. Dalton Trans. 2021, 50, 8955–8962. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, W.R.; Li, Q.; Xue, L.J.; Peng, C. Nitrogen-doped hierarchical heterostructured aerophobic MoSx/Ni3S2 nanowires by one-pot synthesis: System engineering and synergistic effect in electrocatalysis of hydrogen evolution reaction. Energy Environ. Mater. 2021, 4, 658–663. [Google Scholar] [CrossRef]
- Xue, H.Y.; Meng, A.L.; Chen, C.J.; Xue, H.Y.; Li, Z.J.; Wang, C.S. Phosphorus-doped MoS2 with sulfur vacancy defects for enhanced electrochemical water splitting. Sci. China Mater. 2022, 65, 712–720. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Xin, W.; Liu, B.T.; Li, H.X.; Xu, Y.Q.; Zhang, Z.X. Synergistic effect of S vacancies and P dopants in MoS2/Mo2C to promote electrocatalytic hydrogen evolution. Inorg. Chem. Front. 2022, 9, 3461–3469. [Google Scholar] [CrossRef]
- Wang, F.; Niu, S.W.; Liang, X.Q.; Wang, G.M.; Chen, M.H. Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. Nano Res. 2022, 15, 2855–2861. [Google Scholar] [CrossRef]
- Choi, C.H.; Park, S.H.; Woo, S.I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 2012, 6, 7084–7091. [Google Scholar] [CrossRef]
- Dong, W.X.; Zhou, H.B.; Mao, B.D.; Zhang, Z.Y.; Liu, Y.S.; Liu, Y.H.; Li, F.H.; Zhang, D.Q.; Zhang, D.X.; Shi, W.D. Efficient MOF-derived V-Ni3S2 nanosheet arrays for electrocatalytic overall water splitting in alkali. Int. J. Hydrogen Energy 2021, 46, 10773–10782. [Google Scholar] [CrossRef]
- Liu, X.L.; Liu, Q.; Wang, P.; Liu, Y.Z.; Huang, B.B.; Rozhkova, E.A.; Zhang, Q.Q.; Wang, Z.Y.; Dai, Y.; Lu, J. Efficient photocatalytic H2 production via rational design of synergistic spatially-separated dual cocatalysts modified Mn0.5Cd0.5S photocatalyst under visible light irradiation. Chem. Eng. J. 2018, 337, 480–487. [Google Scholar] [CrossRef]
- Wang, F.F.; Zhu, Y.F.; Tian, W.; Lv, X.B.; Zhang, H.L.; Hu, Z.F.; Zhang, Y.X.; Ji, J.Y.; Jiang, W. Co-doped Ni3S2@CNT arrays anchored on graphite foam with a hierarchical conductive network for high-performance supercapacitors and hydrogen evolution electrodes. J. Mater. Chem. A 2018, 6, 10490–10496. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, C.; Hsu, C.W.; Chang, C.W.; Lu, S.Y. Hollow nanocubes composed of well-dispersed mixed metal-rich phosphides in N-doped carbon as highly efficient and durable electrocatalysts for the oxygen evolution reaction at high current densities. J. Mater. Chem. A 2017, 5, 19656–19663. [Google Scholar] [CrossRef]
- Xu, Y.; Chai, X.J.; Ren, T.L.; Yu, H.J.; Yin, S.L.; Wang, Z.Q.; Li, X.N.; Wang, L.; Wang, H.J. Synergism of Interface and Electronic Effects: Bifunctional N-Doped Ni3S2/N-Doped MoS2 Hetero-Nanowires for Efficient Electrocatalytic Overall Water Splitting. Chem. A Eur. J. 2019, 25, 16074–16080. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Wang, P.C.; Wang, H.H.; Li, C.; Si, X.Q.; Qi, J.L.; Cao, J.; Zhong, Z.X.; Fei, W.D.; Feng, J.C. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 2019, 6, 1900246. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.L.; Yao, Z.Y.; Xue, F.; Lu, Y.F.; Liu, M.C.; Deng, H.Q.; Ma, X.F.; Liu, Z.X.; Ma, C.; Huang, H.W.; et al. Defect-rich one-dimensional MoS2 hierarchical architecture for efficient hydrogen evolution: Coupling of multiple advantages into one catalyst. Appl. Catal. B 2019, 258, 117964. [Google Scholar] [CrossRef]
- Wang, D.Z.; Xie, Y.Y.; Wu, Z.Z. Amorphous phosphorus-doped MoS2 catalyst for efficient hydrogen evolution reaction. Nanotechnology 2019, 30, 205401. [Google Scholar] [CrossRef]
- Liu, N.; Yang, L.C.; Wang, S.N.; Zhong, Z.W.; He, S.; Yang, X.Y.; Gao, Q.S.; Tang, Y. Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution. J. Power Source 2015, 275, 588–594. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Lu, Y.Z.; Lin, J.Y.; Wang, X.; Shen, Z.X. A hierarchical MoP nanoflake array supported on Ni foam: A bifunctional electrocatalyst for overall water splitting. Small Methods 2018, 2, 1700369. [Google Scholar] [CrossRef]
- Cheng, C.; Zong, S.C.; Shi, J.W.; Xue, F.; Zhang, Y.Z.; Gua, X.J.; Zheng, B.T.; Deng, J.K.; Guo, L.J. Facile preparation of nanosized MoP as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Appl. Catal. B 2020, 265, 118620. [Google Scholar] [CrossRef]
- Wu, B.X.; Qian, H.; Nie, Z.W.; Luo, Z.P.; Wu, Z.X.; Liu, P.; He, H.; Wu, J.H.; Chen, S.G.; Zhang, F.F. Ni3S2 nanorods growing directly on Ni foam for all-solid-state asymmetric supercapacitor and efficient overall water splitting. J. Energy Chem. 2020, 46, 178–186. [Google Scholar] [CrossRef]
- Muthurasu, A.; Ojha, G.P.; Lee, M.; Kim, H.Y. Zeolitic imidazolate framework derived Co3S4 hybridized MoS2-Ni3S2 heterointerface for electrochemical overall water splitting reactions. Electrochim. Acta 2020, 334, 135537. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, J.L.; Zhao, H.; Jiang, R.J.; Tian, F.; Zhang, R.J. Tremella-like Ni3S2/MnS with ultrathin nanosheets and abundant oxygen vacancies directly used for high speed overall water splitting. Appl. Catal. B 2019, 257, 117899. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Wu, X.M.; Zhao, M.M.; Pang, H.; Xu, L.; Yang, J.; Tang, Y.W. Interfacial engineering-triggered bifunctionality of CoS2/MoS2 nanocubes/nanosheet arrays for high-efficiency overall water splitting. ChemSusChem 2021, 14, 699–708. [Google Scholar] [CrossRef]
- Zhang, M.; Dai, L. Carbon nanomaterials as metal-free catalysts in next generation fuel cells. Nano Energy 2012, 1, 514–517. [Google Scholar] [CrossRef]
- Bian, H.D.; Chen, T.Y.; Chen, Z.X.; Liu, J.H.; Li, Z.B.; Du, P.; Zhou, B.B.; Zeng, X.R.; Tang, J.N.; Liu, C. One-step synthesis of mesoporous Cobalt sulfides (CoSx) on the metal substrate as an efficient bifunctional electrode for overall water splitting. Electrochim. Acta 2021, 389, 138786. [Google Scholar] [CrossRef]
- Wu, Z.X.; Guo, J.P.; Wang, J.; Liu, R.; Xiao, W.P.; Xuan, C.J.; Xia, K.D.; Wang, D.L. Hierarchically porous electrocatalyst with vertically aligned defect-rich CoMoS nanosheets for the hydrogen evolution reaction in an alkaline medium. ACS Appl. Mater. Interfaces 2017, 9, 5288–5294. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.F.; Liu, G.S.; Liu, S.; Chen, W.T.; Cao, D.H.; Song, T.Z.; Wang, N.N.; Zhu, Y.Q. Three-Dimensional Flower-like Fe, C-Doped-MoS2/Ni3S2 Heterostructures Spheres for Accelerating Electrocatalytic Oxygen and Hydrogen Evolution. Crystals 2021, 11, 340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, F.; Zou, X.; Wei, X.; Bao, W.; Ai, T.; Li, W.; Guo, Y. Synergistic Effect of P Doping and Mo-Ni-Based Heterostructure Electrocatalyst for Overall Water Splitting. Materials 2023, 16, 3411. https://doi.org/10.3390/ma16093411
Jia F, Zou X, Wei X, Bao W, Ai T, Li W, Guo Y. Synergistic Effect of P Doping and Mo-Ni-Based Heterostructure Electrocatalyst for Overall Water Splitting. Materials. 2023; 16(9):3411. https://doi.org/10.3390/ma16093411
Chicago/Turabian StyleJia, Feihong, Xiangyu Zou, Xueling Wei, Weiwei Bao, Taotao Ai, Wenhu Li, and Yuchen Guo. 2023. "Synergistic Effect of P Doping and Mo-Ni-Based Heterostructure Electrocatalyst for Overall Water Splitting" Materials 16, no. 9: 3411. https://doi.org/10.3390/ma16093411
APA StyleJia, F., Zou, X., Wei, X., Bao, W., Ai, T., Li, W., & Guo, Y. (2023). Synergistic Effect of P Doping and Mo-Ni-Based Heterostructure Electrocatalyst for Overall Water Splitting. Materials, 16(9), 3411. https://doi.org/10.3390/ma16093411