Rational Design, Stabilities and Nonlinear Optical Properties of Non-Conventional Transition Metalides; New Entry into Nonlinear Optical Materials
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Spin State Analysis
3.2. Optimized Geometries
3.3. Binding Energies
3.4. Expansion of the Nanocage
3.5. Charge Analysis and Dipole Moment
3.6. Frontier Molecular Orbital Analysis
3.7. Nonlinear Optical Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dye, J.L.; DeBaker, M.G. Physical and Chemical Properties of Alkalides And Electrides. Ann. Rev. Phys. Chem. 1987, 38, 271–301. [Google Scholar] [CrossRef]
- Sun, W.-M.; Li, Y.; Li, X.-H.; Wu, D.; He, H.-M.; Li, C.-Y.; Chen, J.-H.; Li, Z.-R. Stability and Nonlinear Optical Response of Alkalides that Contain a Completely Encapsulated Superalkali Cluster. ChemPhysChem 2016, 17, 2672–2678. [Google Scholar] [CrossRef] [PubMed]
- Redko, M.Y.; Huang, R.H.; Jackson, J.E.; Harrison, J.F.; Dye, J.L. Barium Azacrypt and Sodide, the First Alkalide with an Alkaline Earth Cation, Also Contains a Novel Dimer, (Na2)2−. J. Am. Chem. Soc. 2003, 125, 2259–2263. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.-M.; Wu, D.; Li, Y.; Li, Z.-R. Substituent Effects on the Structural Features and Nonlinear Optical Properties of the Organic Alkalide Li+(calix[4]pyrrole)Li−. ChemPhysChem 2013, 14, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.-M.; Fan, L.-T.; Li, Y.; Liu, J.-Y.; Wu, D.; Li, Z.-R. On the Potential Application of Superalkali Clusters in Designing Novel Alkalides with Large Nonlinear Optical Properties. Inorg. Chem. 2014, 53, 6170–6178. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.-Q.; Li, Z.-R.; Wu, D.; Li, Y.; Wang, B.-Q.; Gu, F.L.; Aoki, Y. Effect of the Complexant Shape on the Large First Hyperpolarizability of Alkalides Li+(NH3)4M−. ChemPhysChem 2006, 7, 1759–1763. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.-R.; Wu, D.; Li, Y.; Sun, C.-C.; Gu, F.L.; Aoki, Y. Nonlinear Optical Properties of Alkalides Li+(calix[4]pyrrole)M− (M = Li, Na, and K): Alkali Anion Atomic Number Dependence. J. Am. Chem. Soc. 2006, 128, 1072–1073. [Google Scholar] [CrossRef]
- Sun, W.-M.; Li, X.-H.; Wu, J.; Lan, J.-M.; Li, C.-Y.; Wu, D.; Li, Y.; Li, Z.-R. Can Coinage Metal Atoms Be Capable of Serving as an Excess Electron Source of Alkalides with Considerable Nonlinear Optical Responses? Inorg. Chem. 2017, 56, 4594–4600. [Google Scholar] [CrossRef]
- Wang, F.-F.; Li, Z.-R.; Wu, D.; Wang, B.-Q.; Li, Y.; Li, Z.-J.; Chen, W.; Yu, G.-T.; Gu, F.L.; Aoki, Y. Structures and Considerable Static First Hyperpolarizabilities: New Organic Alkalides (M+@n6adz)M′−(M,M′ = Li, Na, K; n = 2, 3) with Cation Inside and Anion Outside of the Cage Complexants. J. Phys. Chem. B 2008, 112, 1090–1094. [Google Scholar] [CrossRef]
- Sun, W.-M.; Ni, B.-L.; Wu, D.; Lan, J.-M.; Li, C.-Y.; Li, Y.; Li, Z.-R. Designing Alkalides with Considerable Nonlinear Optical Responses and High Stability Based on the Facially Polarized Janus all-cis-1,2,3,4,5,6-Hexafluorocyclohexane. Organometallics 2017, 36, 3352–3359. [Google Scholar] [CrossRef]
- Matalon, S.; Golden, S.; Ottolenghi, M. Nature of the visible absorption bands in metal-amine solutions. J. Phys. Chem. 1969, 73, 3098–3101. [Google Scholar] [CrossRef]
- DeBacker, M.G.; Dye, J.L. Metal-ethylenediamine solutions. Extinction coefficients and equilibriums. J. Phys. Chem. 1971, 75, 3092–3096. [Google Scholar] [CrossRef]
- Lok, M.T.; Tehan, F.J.; Dye, J.L. Spectra of Na-, K-, and e-solv in amines and ethers. J. Phys. Chem. 1972, 76, 2975–2981. [Google Scholar] [CrossRef]
- Ceraso, J.M.; Dye, J.L. 23 Na NMR spectrum of the sodium anion. J. Chem. Phys. 1974, 61, 1585–1587. [Google Scholar] [CrossRef]
- Dye, J.L.; Ceraso, J.M.; Lok, M.; Barnett, B.L.; Tehan, F.J. Crystalline salt of the sodium anion (Na-). J. Am. Chem. Soc. 1974, 96, 608–609. [Google Scholar] [CrossRef]
- Tehan, F.J.; Barnett, B.L.; Dye, J.L. Alkali anions. Preparation and crystal structure of a compound which contains the cryptated sodium cation and the sodium anion. J. Am. Chem. Soc. 1974, 96, 7203–7208. [Google Scholar] [CrossRef]
- Kim, J.; Ichimura, A.S.; Huang, R.H.; Redko, M.; Phillips, R.C.; Jackson, J.E.; Dye, J.L. Crystalline Salts of Na-and K-(Alkalides) that Are Stable at Room Temperature. J. Am. Chem. Soc. 1999, 121, 10666–10667. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.-R.; Wu, D.; Li, Y.; Li, R.-Y.; Sun, C.-C. Inverse Sodium Hydride: Density Functional Theory Study of the Large Nonlinear Optical Properties. J. Phys. Chem. A 2005, 109, 2920–2924. [Google Scholar] [CrossRef]
- Redko, M.; Vlassa, M.; Jackson, J.E.; Misiolek, A.W.; Huang, R.H.; Dye, J.L. Inverse Sodium Hydride”: A Crystalline Salt that Contains H+ and Na−. J. Am. Chem. Soc. 2002, 124, 5928–5929. [Google Scholar] [CrossRef]
- Mutailipu, M.; Poeppelmeier, K.R.; Pan, S. Borates: A Rich Source for Optical Materials. Chem. Rev. 2021, 121, 1130–1202. [Google Scholar] [CrossRef]
- Mutailipu, M.; Yang, Z.; Pan, S. Toward the Enhancement of Critical Performance for Deep-Ultraviolet Frequency-Doubling Crystals Utilizing Covalent Tetrahedra. Acc. Mater. Res. 2021, 2, 282–291. [Google Scholar] [CrossRef]
- Huang, J.; Shu, S.; Cai, G.-M. Review of Heteroleptic Tetrahedra as Birefringent or Nonlinear Optical Motifs. Cryst. Growth Des. 2022, 22, 1500–1514. [Google Scholar] [CrossRef]
- Karpov, A.; Nuss, J.; Wedig, U.; Jansen, M. Cs2Pt: A Platinide(-II) Exhibiting Complete Charge Separation. Angew. Chemie Int. Ed. 2003, 42, 4818–4821. [Google Scholar] [CrossRef]
- Sommer, A. Alloys of Gold with Alkali Metals. Nature 1943, 152, 215. [Google Scholar] [CrossRef]
- Wood, V.E.; Reitz, J.R. Electronic band structure of cesium gold. J. Phys. Chem. Solids. 1962, 23, 229–235. [Google Scholar] [CrossRef]
- Liu, T.L. Optical properties of RbAu and CsAu. Phys. Rev. B 1975, 12, 3008–3012. [Google Scholar] [CrossRef]
- Knecht, J.; Fischer, R.; Overhof, H.; Hensel, F. ESCA study of compounds of gold in the oxidation state −1. J. Chem. Soc. Chem. Commun. 1978, 21, 905–906. [Google Scholar] [CrossRef]
- Köhler, J.; Chang, J.-H. [PtIn6]10+ Octahedra in PtIn7F13: The First Compound of a New Class of Metal-Cluster Fluorides. Angew. Chemie Int. Ed. 2000, 39, 1998–2000. [Google Scholar] [CrossRef]
- Köhler, J.; Friedrich, C.; Lee, H.A.; Whangbo, M.-H. IrIn7GeO8 = [IrIn6](GeO4)(InO4) und Verbindungen der Mischkristallreihe [IrIn6](Ge1+xIn1−4x/3O8) (0 ≤ x ≤ 0.75)–erste Oxide mit [IrIn6]-Oktaedern. Z. Anorg. Allg. Chem. 2007, 633, 1464–1471. [Google Scholar] [CrossRef]
- Li, X.-H.; Zhang, X.-L.; Chen, Q.-H.; Zhang, L.; Chen, J.-H.; Wu, D.; Sun, W.-M.; Li, Z.-R. Coinage metalides: A new class of excess electron compounds with high stability and large nonlinear optical responses. Phys. Chem. Chem. Phys. 2020, 22, 8476–8484. [Google Scholar] [CrossRef]
- Malloci, G.; Cappellini, G.; Mulas, G.; Satta, G. Quasiparticle effects and optical absorption in small fullerene like GaP clusters. Phys. Rev. B 2004, 70, 205429. [Google Scholar] [CrossRef]
- Tozzini, V.; Buda, F.; Fasolino, A. Fullerene-like III−V clusters: A density functional theory prediction. J. Phys. Chem. B 2001, 105, 12477–12480. [Google Scholar] [CrossRef]
- Wu, H.-S.; Zhang, F.-Q.; Xu, X.-H.; Zhang, C.-J.; Jiao, H. Geometric and Energetic Aspects of Aluminum Nitride Cages. J. Phys. Chem. A 2003, 107, 204–209. [Google Scholar] [CrossRef]
- Seifert, G.; Fowler, P.W.; Mitchell, D.; Porezag, D.; Frauenheim, T. Boron-nitrogen analogues of the fullerenes: Electronic and structural properties. Chem. Phys. Lett. 1997, 268, 352–358. [Google Scholar] [CrossRef]
- Shokuhi Rad, A.; Ayub, K. Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study. Vacuum 2016, 131, 135–141. [Google Scholar] [CrossRef]
- Shokuhi Rad, A.; Ayub, K. A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages. J. Alloys Compd. 2016, 672, 161–169. [Google Scholar] [CrossRef]
- Rad, A.S.; Ayub, K. How can nickel decoration affect H2 adsorption on B12P12 nano-heterostructures? J. Mol. Liq. 2018, 255, 168–175. [Google Scholar] [CrossRef]
- Ayub, K. Transportation of hydrogen atom and molecule through X12Y12nano-cages. Int. J. Hydrog. Energy 2017, 42, 11439–11451. [Google Scholar] [CrossRef]
- Ayub, K. Binding affinity and permeation of X12Y12 nanoclusters for helium and neon. J. Mol. Liq. 2017, 244, 124–134. [Google Scholar] [CrossRef]
- Iqbal, J.; Ludwig, R.; Ayub, K. Phosphides or nitrides for better NLO properties? A detailed comparative study of alkali metal doped nano-cages. Mater. Res. Bull. 2017, 92, 113–122. [Google Scholar] [CrossRef]
- Iqbal, J.; Ayub, K. Enhanced electronic and non-linear optical properties of alkali metal (Li, Na, K) doped boron nitride nano-cages. J. Alloys Compd. 2016, 687, 976–983. [Google Scholar] [CrossRef]
- Iqbal, J.; Ayub, K. Theoretical study of the non linear optical properties of alkali metal (Li, Na, K) doped aluminum nitride nanocages. RSC Adv. 2016, 6, 94228–94235. [Google Scholar] [CrossRef]
- Munsif, S.; Khan, S.; Ali, A.; Gilani, M.A.; Iqbal, J.; Ludwig, R.; Ayub, K. Remarkable nonlinear optical response of alkali metal doped aluminum phosphide and boron phosphide nanoclusters. J. Mol. Liq. 2018, 271, 51–64. [Google Scholar] [CrossRef]
- Ayub, K. Are phosphide nano-cages better than nitride nano-cages? A kinetic, thermodynamic and non-linear optical properties study of alkali metal encapsulated X12Y12 nano-cages. J. Mater. Chem. C 2016, 4, 10919–10934. [Google Scholar] [CrossRef]
- Ahsan, A.; Khan, S.; Gilani, M.A.; Ayub, K. Endohedral metallofullerene electrides of Ca12O12with remarkable nonlinear optical response. RSC Adv. 2021, 11, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- Sajid, H.; Ullah, F.; Khan, S.; Ayub, K.; Arshad, M.; Mahmood, T. Remarkable static and dynamic NLO response of alkali and superalkali doped macrocyclic [hexa-]thiophene complexes; a DFT approach. RSC Adv. 2021, 11, 4118–4128. [Google Scholar] [CrossRef] [PubMed]
- Kosar, N.; Tahir, H.; Ayub, K.; Mahmood, T. DFT studies of single and multiple alkali metals doped C24 fullerene for electronics and nonlinear optical applications. J. Mol. Graph. Model. 2021, 105, 107867. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.; Khaliq, F.; Mahmood, T.; Ayub, K.; Tabassum, S.; Gilani, M.A. Influence of bi-alkali metals doping over Al12N12 nanocage on stability and optoelectronic properties: A DFT investigation. Radiat. Phys. Chem. 2021, 184, 109457. [Google Scholar] [CrossRef]
- Baloach, R.; Ayub, K.; Mahmood, T.; Asif, A.; Tabassum, S.; Gilani, M.A. A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability. J. Inorg. Organomet. Polym. Mater. 2021, 31, 3062–3076. [Google Scholar] [CrossRef]
- Perez-Jimenez, A.J.; Sancho-García, J.C. Using circumacenes to improve organic electronics and molecular electronics: Design clues. Nanotechnology 2009, 20, 475201. [Google Scholar] [CrossRef]
- Mocci, P.; Cardia, R.; Cappellini, G. Si-atoms substitutions effects on the electronic and optical properties of coronene and ovalene. New J. Phys. 2018, 20, 113008. [Google Scholar] [CrossRef]
- Mocci, P.; Cardia, R.; Cappellini, G. Inclusions of Si-atoms in Graphene nanostructures: A computational study on the ground-state electronic properties of Coronene and Ovalene. J. Phys. Conf. Ser. 2018, 956, 012020. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, version 5.0; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Hussain, A.I.; Chatha, S.A.S.; Mansha, A.; Ayub, K. Density functional theory study of geometric and electronic properties of full range of bimetallic AgnYm (n + m = 10) clusters. J. Alloys Compd. 2017, 705, 232–246. [Google Scholar] [CrossRef]
- Rad, A.S.; Ayub, K. Coordination of nickel atoms with Al12X12 (X = N, P) nanocages enhances H2 adsorption: A surface study by DFT. Vacuum 2016, 133, 70–80. [Google Scholar] [CrossRef]
- Khaliq, F.; Afzaal, A.; Tabassum, S.; Mahmood, T.; Ayub, K.; Khan, A.L.; Yasin, M.; Gilani, M.A. Surface functionalization of Si6Li6 cluster with superalkalis to achieve high nonlinear optical response: A DFT study. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 129985. [Google Scholar] [CrossRef]
- Godby, R.W.; Schlüter, M.; Sham, L. Self-energy operators and exchange-correlation potentials in semiconductors. Phys. Rev. B 1988, 37, 10159. [Google Scholar] [CrossRef]
- Cappellini, G.; Furthmüller, J.; Cadelano, E.; Bechstedt, F. Electronic and optical properties of cadmium fluoride: The role of many-body effects. Phys. Rev. B 2013, 87, 075203. [Google Scholar] [CrossRef]
- Cardia, R.; Malloci, G.; Rignanese, G.M.; Blase, X.; Molteni, E.; Cappellini, G. Electronic and optical properties of hexathiapentacene in the gas and crystal phases. Phys. Rev. B 2016, 93, 235132. [Google Scholar] [CrossRef]
- Stagi, L.; Chiriu, D.; Scholz, M.; Carbonaro, C.M.; Corpino, R.; Porcheddu, A.; Rajamaki, S.; Cappellini, C.; Cardia, R.; Ricci, P.C. Vibrational and optical characterization of s-triazine derivatives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 183, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Pinna, E.; Melis, C.; Antidormi, A.; Cardia, R.; Sechi, E.; Cappellini, G.; D’Ischia, M.; Colombo, L.; Mula, G. Deciphering molecular mechanisms of interface buildup and stability in porous Si/eumelanin hybrids. Int. J. Mol. Sci. 2017, 18, 1567. [Google Scholar] [CrossRef] [PubMed]
- Faber, C.; Boulanger, P.; Attaccalite, C.; Duchemin, I.; Blase, X. Excited states properties of organic molecules: From density functional theory to the GW and Bethe–Salpeter Green’s function formalisms. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130271. [Google Scholar] [CrossRef]
- Oudar, J.L.; Chemla, D.S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 1977, 66, 2664–2668. [Google Scholar] [CrossRef]
- Ullah, F.; Kosar, N.; Ayub, K.; Mahmood, T. Superalkalis as a source of diffuse excess electrons in newly designed inorganic electrides with remarkable nonlinear response and deep ultraviolet transparency: A DFT study. Appl. Surf. Sci. 2019, 483, 1118–1128. [Google Scholar] [CrossRef]
- Ahsan, A.; Ayub, K. Extremely large nonlinear optical response and excellent electronic stability of true alkaline earthides based on hexaammine complexant. J. Mol. Liq. 2020, 297, 111899. [Google Scholar] [CrossRef]
- Ahsan, A.; Ayub, K. Adamanzane based alkaline earthides with excellent nonlinear optical response and ultraviolet transparency. Opt. Laser Technol. 2020, 129, 106298. [Google Scholar] [CrossRef]
- Ahsan, A.; Sarfaraz, S.; Fayyaz, F.; Asghar, M.; Ayub, K. Enhanced non-linear optical response of calix[4]pyrrole complexant based earthides in the presence of oriented external electric field. J. Mol. Liq. 2022, 350, 118504. [Google Scholar] [CrossRef]
- Ahsan, A.; Sarfaraz, S.; Gilani, M.A.; Mahmood, T.; Ahmad, Z.; Ayub, K. Alkaline earthides based on 15-crown-5 ether with remarkable NLO response. Eur. Phys. J. Plus 2022, 137, 1149. [Google Scholar] [CrossRef]
- Ahsan, A.; Sarfaraz, S.; Fayyaz, F.; Asghar, M.; Ayub, K. Theoretical study of 36Adz based alkaline earthides M+(36Adz)M− (M+ = Li & Na; M− = Be, Mg & Ca) with remarkable nonlinear optical response. Mater. Sci. Semicond. Process. 2023, 153, 107119. [Google Scholar] [CrossRef]
- Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Sahraoui, B. Transparent amorphous zinc oxide thin films for NLO applications. Opt. Mater. 2014, 37, 327–337. [Google Scholar] [CrossRef]
- Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
- Du, Y.; Ai, X.; Li, Z.; Sun, T.; Huang, Y.; Zeng, X.; Chen, X.; Rao, F. Visible-to-Ultraviolet Light Conversion: Materials and Applications. Adv. Photonics Res. 2021, 2, 2000213. [Google Scholar] [CrossRef]
- Rad, A.S.; Ayub, K. Nonlinear optical and electronic properties of Cr-, Ni-, and Ti-substituted C20 fullerenes: A quantum-chemical study. Mater. Res. Bull. 2018, 97, 399–404. [Google Scholar] [CrossRef]
- Arshad, Y.; Khan, S.; Hashmi, M.A.; Ayub, K. Transition metal doping: A new and effective approach for remarkably high nonlinear optical response in aluminum nitride nanocages. New J. Chem. 2018, 42, 6976–6989. [Google Scholar] [CrossRef]
- Irshad, S.; Ullah, F.; Khan, S.; Ludwig, R.; Mahmood, T.; Ayub, K. First row transition metals decorated boron phosphide nanoclusters as nonlinear optical materials with high thermodynamic stability and enhanced electronic properties; A detailed quantum chemical study. Opt. Laser Technol. 2021, 134, 106570. [Google Scholar] [CrossRef]
Spin States | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|
AlN | Stable spin | Doublet (0) C1 | Quintet (0) C1 | Quartet (0) C1 | Septet (0) Th | Sextet (0) C1 | Quintet (0) C1 | Quartet (0) C1 | Singlet (0) C1 | Doublet (0) C1 | Singlet (0) Th |
2nd stable | Quartet (2.72) C1 | Triplet (2.13) C1 | Sextet (5.22) C1 | Quintet (3.18) Th | Quartet (3.41) C1 | Triplet (1.41) C1 | Doublet (0.92) C1 | Triplet (0.44) C1 | Quartet (44.17) C1 | Triplet (21.09) Cs | |
3rd stable | Sextet (57.0) C1 | Singlet (9.65) C1 | Doublet (14.46) C1 | Triplet (11.46) C1 | Octet (4.40) C1 | Septet (17.18) C1 | Sextet (23.13) C1 | Quintet (12.32) C1 | Sextet (83.66) C1 | Quintet (76.46) C1 | |
4th stable | Octet (122.9) C1 | Septet (66.64) C1 | Octet (70.54) C1 | Singlet (44.37) C1 | Doublet (19.68) C1 | Singlet (28.09) C1 | Octet (78.48) C1 | Septet C1 | Octet (154.63) C1 | Septet C1 | |
AlP | Stable spin | Quartet (0) C1 | Quintet (0) C3 | Sextet (0) C1 | Septet (0) C1 | Sextet (0) Th | Quintet (0) C2v | Doublet (0) C1 | Singlet (0) C3 | Doublet (0) C1 | Singlet (0) Th |
2nd stable | Doublet (4.38) C1 | Triplet (4.82) C1 | Quartet (8.93) C1 | Quintet (11.89) C1 | Quartet (19.64) C1 | Triplet (6.74) C1 | Quartet (0.43) C1 | Triplet (12.76) C1 | Quartet (45.35) C1 | Triplet (41.78) C1 | |
3rd stable | Sextet (43.88) C1 | Singlet (9.58) C1 | Doublet (12.55) C1 | Triplet (36.26) C1 | Octet (26.89) C1 | Septet (13.70) C1 | Sextet (29.09) C1 | Quintet (55.88) C1 | Sextet (90.70) C1 | Quintet (89.62) C1 | |
4th stable | Octet (92.19) C1 | Septet (47.18) Cs | Octet (38.12) C1 | Singlet (61.57) C1 | Doublet (43.58) C1 | Singlet (41.41) C1 | Octet (78.85) C1 | Septet (112.37) C1 | Octet (144.85) C1 | Septet (132.56) C3 |
Transition Metal | Nanocage | |||
---|---|---|---|---|
Al12N12 | Al12P12 | |||
ZPE | Gibbs | ZPE | Gibbs | |
Sc | −20.72 | −12.56 | −64.47 | −58.36 |
Ti | −49.68 | −41.72 | −62.63 | −56.00 |
V | −16.74 | −8.78 | −62.74 | −55.83 |
Cr | −20.93 | −13.95 | −58.07 | −53.10 |
Mn | 30.68 | 38.83 | −14.42 | −7.83 |
Fe | 2.00 | 9.79 | −23.84 | −19.14 |
Co | −12.10 | −4.45 | −81.03 | −73.76 |
Ni | −85.57 | −77.84 | −135.88 | −127.54 |
Cu | −44.66 | −38.17 | −69.07 | −61.24 |
Zn | 21.35 | 28.11 | −24.34 | −17.01 |
Nanocage | Property | Transition Metals | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | |||
Al12N12 | Charge | 0.53 | 0.41 | 0.37 | −0.04 | 0.17 | 0.07 | −0.11 | −0.27 | −0.27 | −0.17 | - |
Diameter | 4.597 | 4.594 | 4.511 | 4.517 | 4.527 | 4.50 | 4.492 | 4.430 | 4.480 | 4.503 | 4.440 | |
Change | 0.157 | 0.154 | 0.071 | 0.077 | 0.087 | 0.06 | 0.052 | −0.01 | 0.04 | 0.063 | ||
Dipole Moment | 6.11 | 3.14 | 3.15 | 0.05 | 0.07 | 3.43 | 4.64 | 0.24 | 2.84 | 0.037 | 0.0 | |
Bond order | 4.27 | 4.39 | 3.31 | 2.13 | 2.57 | 2.60 | 2.62 | 3.35 | 2.56 | 2.48 | - | |
Symmetry | C1 | C1 | C1 | Th | C3 | C1 | C1 | C1 | C1 | Th | Th | |
Orientation | Side | Side | Side | Center | Center | Side | Side | Side | Side | Center | ||
Al12P12 | Charge | 0.36 | 0.14 | 0.16 | −0.02 | −0.06 | −0.12 | −0.03 | −0.17 | −0.2 | −0.41 | - |
Diameter | 5.532 | 5.460 | 5.423 | 5.490 | 5.504 | 5.490 | 5.428 | 5.397 | 5.442 | 5.500 | 5.45 | |
Change | 0.082 | 0.010 | −0.027 | 0.040 | 0.054 | 0.04 | −0.022 | −0.053 | −0.008 | 0.05 | ||
Dipole Moment | 3.25 | 4.71 | 5.31 | 0.13 | 0.02 | 0.08 | 1.79 | 1.20 | 2.50 | 0.00 | 0.0 | |
Bond order | 3.22 | 2.80 | 2.76 | 2.55 | 2.91 | 3.09 | 2.91 | 3.50 | 2.87 | 3.00 | - | |
Symmetry | C1 | C3 | C1 | C1 | Th | C2V | C1 | C3 | C1 | Th | Th | |
Orientation | Side | Side | Side | Center | Center | Center | Side | Side | Side | Center |
Nanocage | Property | Transition Metals | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Bare | ||
Al12N12 | ELUMO | −2.67 | −2.05 | −2.68 | −1.67 | −1.78 | −2.62 | −2.13 | −2.99 | −2.08 | −2.22 | −2.54 |
EHOMO | −4.34 | −4.56 | −4.23 | −3.78 | −4.06 | −4.18 | −4.04 | −4.81 | −4.24 | −4.96 | −6.47 | |
EH-L | 1.67 | 2.51 | 1.56 | 2.12 | 2.28 | 1.55 | 1.91 | 1.82 | 2.16 | 2.74 | 3.93 | |
% ΔEH-L | 57.6 | 36.0 | 60.4 | 46.2 | 42.0 | 60.5 | 51.4 | 53.7 | 45.0 | 30.4 | 0.0 | |
βo | 17,590 | 480 | 279,495 | 681 | 1131 | 9631 | 11,691 | 100 | 2342 | 13 | 0 | |
Al12P12 | ELUMO | −3.42 | −3.09 | −3.26 | −2.94 | −3.06 | −3.12 | −3.40 | −3.49 | −3.06 | −3.09 | −3.36 |
EHOMO | −4.95 | −5.06 | −5.20 | −5.62 | −6.06 | −6.04 | −5.12 | −5.96 | −5.64 | −6.71 | −6.75 | |
EH-L | 1.53 | 1.97 | 1.94 | 2.68 | 3.00 | 2.92 | 1.72 | 2.47 | 2.59 | 3.62 | 3.39 | |
% ΔEH-L | 54.8 | 41.9 | 42.8 | 20.8 | 11.4 | 13.7 | 49.4 | 27.3 | 23.7 | −6.7 | 0.0 | |
βo | 3954 | 2345 | 2773 | 403 | 3 | 72 | 302 | 702 | 0.82 | 0 |
Transition Metal | Endo-TM@Al12N12 | Endo-TM@Al12P12 | ||
---|---|---|---|---|
α | βo | α | βo | |
Sc | 486 | 17,590 | 664 | 3954 |
Ti | 341 | 480 | 660 | 2345 |
V | 522 | 279,495 | 624 | 2773 |
Cr | 473 | 681 | 662 | 403 |
Mn | 559 | 1131 | 663 | 3.0 |
Fe | 327 | 9631 | 643 | 72 |
Co | 348 | 11,691 | 648 | 2442 |
Ni | 294 | 100 | 586 | 302 |
Cu | 322 | 2342 | 618 | 702 |
Zn | 326 | 13 | 626 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhalifah, M.A.; Sheikh, N.S.; Al-Faiyz, Y.S.S.; Bayach, I.; Ludwig, R.; Ayub, K. Rational Design, Stabilities and Nonlinear Optical Properties of Non-Conventional Transition Metalides; New Entry into Nonlinear Optical Materials. Materials 2023, 16, 3447. https://doi.org/10.3390/ma16093447
Alkhalifah MA, Sheikh NS, Al-Faiyz YSS, Bayach I, Ludwig R, Ayub K. Rational Design, Stabilities and Nonlinear Optical Properties of Non-Conventional Transition Metalides; New Entry into Nonlinear Optical Materials. Materials. 2023; 16(9):3447. https://doi.org/10.3390/ma16093447
Chicago/Turabian StyleAlkhalifah, Mohammed A., Nadeem S. Sheikh, Yasair S. S. Al-Faiyz, Imene Bayach, Ralf Ludwig, and Khurshid Ayub. 2023. "Rational Design, Stabilities and Nonlinear Optical Properties of Non-Conventional Transition Metalides; New Entry into Nonlinear Optical Materials" Materials 16, no. 9: 3447. https://doi.org/10.3390/ma16093447
APA StyleAlkhalifah, M. A., Sheikh, N. S., Al-Faiyz, Y. S. S., Bayach, I., Ludwig, R., & Ayub, K. (2023). Rational Design, Stabilities and Nonlinear Optical Properties of Non-Conventional Transition Metalides; New Entry into Nonlinear Optical Materials. Materials, 16(9), 3447. https://doi.org/10.3390/ma16093447