Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development
Abstract
:1. Introduction
2. Nanomaterials as Modifiers of Geopolymer Composites
3. Geopolymer Nanocomposites Reinforced with Selected Nanomaterials
3.1. Geopolymer Nanocomposites Reinforced with Carbon Nanotubes
3.2. Geopolymer Nanocomposites Containing Graphene and Graphene Oxide
3.3. Geopolymer Nanocomposites Reinforced with Nanoclay
3.4. Geopolymer Nanocomposites with Magnetic Nanoparticles
3.5. Geopolymer Nanocomposites Reinforced with Titanium Dioxide Nanoparticles
3.6. Geopolymer Nanocomposites Reinforced with Nanosilica
4. Sustainability of Geopolymer Nanocomposites
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novotný, J.; Jaskevic, M.; Mamon, F.; Mareš, J.; Horký, R.; Houška, P. Manufacture and Characterization of Geopolymer Coatings Deposited from Suspensions on Aluminium Substrates. Coatings 2022, 12, 1695. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016, 125, 253–267. [Google Scholar] [CrossRef]
- Ren, B.; Zhao, Y.; Bai, H.; Kang, S.; Zhang, T.; Song, S. Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere 2021, 267, 128900. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, B.; Zhang, Q.; Wen, Q.; Lu, X.; Xiao, K.; Ekberg, C.; Zhang, S. Application of geopolymers for treatment of industrial solid waste containing heavy metals: State-of-the-art review. J. Clean. Prod. 2023, 390, 136053. [Google Scholar] [CrossRef]
- Grba, N.; Baldermann, A.; Dietzel, M. Novel green technology for wastewater treatment: Geo-material/geopolymer applications for heavy metal removal from aquatic media. Int. J. Sediment Res. 2023, 38, 33–48. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Moghaddam, T.B.; Zhang, F.; Otto, F. Synergistic effects of iron (Fe) and biochar on light-weight geopolymers when used in wastewater treatment applications. J. Clean. Prod. 2021, 322, 129033. [Google Scholar] [CrossRef]
- Aouan, B.; Alehyen, S.; Fadil, M.; El Alouani, M.; Saufi, H.; El Herradi, E.H.; El Makhoukhi, F.; Taibi, M. Development and optimization of geopolymer adsorbent for water treatment: Application of mixture design approach. J. Environ. Manag. 2023, 338, 117853. [Google Scholar] [CrossRef]
- Nawaz, M.; Heitor, A.; Sivakumar, M. Geopolymers in construction—Recent developments. Constr. Build. Mater. 2020, 260, 120472. [Google Scholar] [CrossRef]
- Freire, A.L.; José, H.J.; de Fátima Peralta Muniz Moreira, R. Potential applications for geopolymers in carbon capture and storage. Int. J. Greenh. Gas Control 2022, 118, 103687. [Google Scholar] [CrossRef]
- Wang, A.; Fang, Y.; Zhou, Y.; Wang, C.; Dong, B.; Chen, C. Green Protective Geopolymer Coatings: Interface Characterization, Modification and Life-Cycle Analysis. Materials 2022, 15, 3767. [Google Scholar] [CrossRef]
- Hamidi, R.M.; Siyal, A.A.; Luukkonen, T.; Shamsuddin, R.M.; Moniruzzaman, M. Fly ash geopolymer as a coating material for controlled-release fertilizer based on granulated urea. RSC Adv. 2022, 12, 33187–33199. [Google Scholar] [CrossRef]
- Ricciotti, L.; Apicella, A.; Perrotta, V.; Aversa, R. Geopolymer Materials for Bone Tissue Applications: Recent Advances and Future Perspectives. Polymers 2023, 15, 1087. [Google Scholar] [CrossRef]
- Forsgren, J.; Pedersen, C.; Strømme, M.; Engqvist, H. Synthetic geopolymers for controlled delivery of oxycodone: Adjustable and nanostructured porosity enables tunable and sustained drug release. PLoS ONE 2011, 6, e17759. [Google Scholar] [CrossRef]
- Titirici, M.M.; White, R.J. Geopolymers: A paradigm shift in sustainable chemistry. Chem. Soc. Rev. 2021, 50, 5836–5858. [Google Scholar]
- Zhang, C.; Khorshidi, H.; Najafi, E.; Ghasemi, M. Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review. J. Clean. Prod. 2023, 384, 135390. [Google Scholar] [CrossRef]
- Xie, T.; Fang, C. Nanomaterials Applied in Modifications of Geopolymer Composites: A Review. Aust. J. Civ. Eng. 2019, 17, 32–49. [Google Scholar] [CrossRef]
- Huseien, G.F.; Hamzah, H.K.; Sam, A.R.M.; Khalid, N.H.A.; Shah, K.W.; Deogrescu, D.P.; Mirza, J. Alkali-activated mortars blended with glass bottle waste nano powder: Environmental benefit and sustainability. J. Clean. Prod. 2020, 243, 118636. [Google Scholar] [CrossRef]
- Faheem, M.T.M.; Abdullah, M.M.a.; Hussin, K.; Binhussain, M.; Ghazali, C.M.R.; Izzat, A. Application of Clay-Based Geopolymer in Brick Production: A Review. Adv. Mater. Res. 2013, 626, 878–882. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.; Wang, J.; Shi, Y.; Ling, Y. Effect of PVA fiber on durability of cementitious composite containing nano-SiO2. Nanotechnol. Rev. 2019, 8, 116–127. [Google Scholar] [CrossRef]
- Zhang, P.; Ling, Y.; Wang, J.; Shi, Y. Bending resistance of PVA fiber reinforced cementitious composites containing nano-SiO2. Nanotechnol. Rev. 2019, 8, 690–698. [Google Scholar] [CrossRef]
- Tay, C.H.; Mazlan, N.; Wayayok, A.; Basri, M.S.; Mustafa, M.; Abdullah, A. Nanocellulose reinforced zeolite based geopolymer concrete: Density analysis through response surface methodology. Mater. Today Proc. 2022, 66, 2873–2882. [Google Scholar] [CrossRef]
- Rahmawati, C.; Aprilia, S.; Saidi, T.; Aulia, T.B. Current development of geopolymer cement with nanosilica and cellulose nanocrystals. J. Phys. Conf. Ser. 2021, 1783, 12056. [Google Scholar] [CrossRef]
- Sudalaimani, K.K.; Vijayakumar, C.T.; Saravanakumar, S.S. Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based self-cured geopolymer mortars. J. Hazard. Mater. 2019, 361, 56–63. [Google Scholar]
- Shaikh, F.U.A.; Hosan, A. Effect of Nano Alumina on Compressive Strength and Microstructure of High Volume Slag and Slag-Fly Ash Blended Pastes. Front. Mater. 2019, 6, 90. [Google Scholar] [CrossRef]
- Chougan, M.; Ghaffar, S.H.; Jahanzat, M.; Albar, A.; Mujaddedi, N.; Swash, R. The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites. Constr. Build. Mater. 2020, 250, 118928. [Google Scholar] [CrossRef]
- Alomayri, T. Performance evaluation of basalt fiber-reinforced geopolymer composites with various contents of nano CaCO3. Ceram. Int. 2021, 47, 29949–29959. [Google Scholar] [CrossRef]
- Muhammad, Y.K.; Ans, A.R.; Zia, U.A.; Waqas, A.; Hassan, A. Recent advances in nanocellulose-based different biomaterials: Types, properties, and emerging applications. J. Mater. Res. Technol. 2021, 14, 2601–2623. [Google Scholar]
- Guo, X.; Shi, H. Durability and pore structure of nano-particle-modified geopolymers of waste brick powder-class C fly ash. Chin. J. Mater. Res. 2017, 31, 110–116. [Google Scholar]
- Wang, J.B.; Zhou, T.T.; Xu, D.Y.; Zhou, Z.H.; Du, P.; Xie, N.; Cheng, X.; Liu, Y. Effect of nano-silica on the efflorescence of waste based alkali-activated inorganic binder. Constr. Build. Mater. 2018, 167, 381–390. [Google Scholar] [CrossRef]
- Roopchund, R.; Andrew, J.; Sithole, B. Using cellulose nanocrystals to improve the mechanical properties of fly ash-based geopolymer construction materials. Eng. Sci. Technol. Int. 2022, 25, 100989. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, J.; Sun, X.; Chen, H.; Yu, T.; Yu, T.B. The synergistic effect of nano Y2O3/CeO2 and nano Al2O3/SiO2 on the properties of vitrified bond and vitrified bond CBN composites. Ceram. Int. 2020, 46, 14224–14231. [Google Scholar] [CrossRef]
- Reddy, N.A.K.; Ramujee, K. Comparative study on mechanical properties of fly ash & GGBFS based geopolymer concrete and OPC concrete using nano-alumina. Mater. Today Proc. 2022, 60, 399–404. [Google Scholar]
- Xavier, C.S.B.; Rahim, A. Nano aluminium oxide geopolymer concrete: An experimental study. Mater. Today Proc. 2022, 56, 1643–1647. [Google Scholar] [CrossRef]
- Korniejenko, K.; Figiela, B.; Miernik, K.; Ziejewska, C.; Marczyk, J.; Hebda, M.; Cheng, A.; Lin, W.-T. Mechanical and Fracture Properties of Long Fiber Reinforced Geopolymer Composites. Materials 2021, 14, 5183. [Google Scholar] [CrossRef] [PubMed]
- Deb, P.S.; Sarker, P.K.; Barbhuiya, S. Effects of nano-silica on the strength development of geopolymer cured at room temperature. Constr. Build. Mater. 2015, 101, 675–683. [Google Scholar] [CrossRef]
- Zidi, Z.; Ltifi, M.; Zafar, I. Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer. J. Build. Eng. 2021, 33, 101586. [Google Scholar] [CrossRef]
- Xu, S.L.; Malik, M.A.; Qi, Z.; Huang, B.T.; Li, Q.H.; Sarkar, M. Influence of the PVA fibers and SiO2 NPs on the structural properties of fly ash based sustainable geopolymer. Constr. Build. Mater. 2018, 164, 238–245. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Chindaprasirt, P.; Sata, V.; Hanjitsuwan, S.; Hatanaka, S. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater Des. 2014, 55, 58–65. [Google Scholar] [CrossRef]
- Durak, U.; Karahan, O.; Uzal, B.; İlkentapar, S.; Atiş, C.D. Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Struct. Concr. 2021, 22, 352–367. [Google Scholar] [CrossRef]
- Meng, T.; Ahmed, S.; Dai, D.; Yu, Y. Effects of load types and critical molar ratios on strength properties and geopolymerization mechanism. Rev. Adv. Mater. Sci. 2021, 60, 216–222. [Google Scholar] [CrossRef]
- Liu, X.; Peng, Z.; Pan, C.; Hu, X.; Wan, C.; Yang, H. Mechanical properties and microscopic analysis of nano-silica modified fly ash geopolymer. Mater. Rev. 2020, 34, 22078–22082. [Google Scholar]
- Marczyk, J.; Ziejewska, C.; Korniejenko, K.; Łach, M.; Marzec, W.; Góra, M.; Dziura, P.; Sprince, A.; Szechyńska-Hebda, M.; Hebda, M. Properties of 3D Printed Concrete–Geopolymer Hybrids Reinforced with Aramid Roving. Materials 2022, 15, 6132. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.B.; Saxena, S.K.; Kumar, M. Effect of nanomaterials on the properties of geopolymer mortars and concrete. Mater. Today Proc. 2018, 5, 9035–9040. [Google Scholar] [CrossRef]
- Fatih, K.; İbrahim, T.; Enes, E. Improving elevated temperature performance of geopolymer concrete utilizing nano-silica, micro-silica and styrene-butadiene latex. Constr. Build. Mater. 2021, 286, 122980. [Google Scholar]
- Shaise, K.J.; Yashida, N.; Alessio, C.M.; Muhammed, A.; Girija, K. Effect of addition of nanoclay and SBR latex on fly ash-slag geopolymer mortar. J. Build. Eng. 2023, 66, 105875. [Google Scholar]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S. The role of inorganic polymer technology in the development of green concrete. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Provis, J.L.; Duxson, P.; van Deventer, J.S. The role of alkali-activated materials in sustainable construction. Mater. Today 2011, 14, 394–401. [Google Scholar]
- Zhu, W.; Wang, Q.; Zhang, Y.; Chen, D. Carbon nanotube reinforced geopolymer composites: A review. Mater. Des. 2015, 65, 653–678. [Google Scholar]
- Tang, W.; Lu, X.; Qi, T. Preparation and characterization of carbon nanotube/Geopolymer nanocomposites with high mechanical properties. Ceram. Int. 2019, 45, 24858–24863. [Google Scholar]
- Rovnaníková, P.; Kovářík, T. Structural characterization of carbon nanotubes and carbon nanotube-reinforced geopolymer composite. J. Mater. Sci. 2021, 56, 4694–4712. [Google Scholar]
- Li, X.; Li, Y.; Chen, J.; Chen, Y. Mechanical and electrical properties of carbon nanotube/geopolymer nanocomposites. J. Mater. Sci. 2018, 53, 7536–7547. [Google Scholar]
- Wang, L.; Li, Z.; Zhang, C. Preparation and characterization of carbon nanotube reinforced geopolymer nanocomposites with enhanced mechanical and thermal properties. Materials 2019, 225, 450–461. [Google Scholar]
- Wang, Y.; Chen, C.; Zhao, Z.; Zhang, L.; Li, Y. Synthesis and properties of carbon nanotube reinforced geopolymer composites. J. Mater. Sci. 2018, 53, 13461–13475. [Google Scholar]
- Wang, X.; Yang, X.; Hu, S.; Feng, D. Carbon nanotube-reinforced geopolymer composites for high-temperature applications: A review. Compos. B Eng. 2020, 183, 107658. [Google Scholar]
- Qian, X.; Lu, L.; Yan, H.; Huang, Y. Enhanced mechanical and thermal properties of carbon nanotube-geopolymer composite by pre-treatment. Constr. Build. Mater. 2019, 206, 468–477. [Google Scholar]
- Liu, Y.; Chen, Z.; Zhu, M.; Lu, C.; Chen, G.; Huang, X. Preparation and properties of carbon nanotube/geopolymer nanocomposites. J. Alloys Compd. 2020, 816, 152559. [Google Scholar]
- Wang, L.; Li, Z.; Zhang, C. Thermal and electrical properties of carbon nanotube reinforced geopolymer nanocomposites. Constr. Build. Mater. 2020, 234, 117409. [Google Scholar]
- Yang, Y.; Song, L.; Chen, F. Preparation and properties of carbon nanotube-geopolymer composites for energy storage applications. J. Mater. Sci. 2019, 54, 9341–9354. [Google Scholar]
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, L.; Wang, X.; Yao, Q.; Wang, D. In-situ and ex-situ approaches to graphene-reinforced geopolymer composites: A review. Compos. B Eng. 2017, 15, 223–231. [Google Scholar]
- Duan, P.; Liu, J.; Li, W.; Yu, Q.; Lu, Z. Mechanical properties of graphene/geopolymer nanocomposites: A review. Compos. B Eng. 2019, 175, 107032. [Google Scholar]
- Abdollahnejad, Z.; Rafiee, M.A. Graphene-geopolymer nanocomposites: A review. J. Mater. Sci. 2018, 53, 12081–12101. [Google Scholar]
- Kriegel, R.; Ferrari, A.; Nistico, R. The influence of graphene and graphene oxide on the properties of geopolymer composites. Materials 2017, 10, 1440. [Google Scholar]
- Singh, D.; Singh, N.B.; Singh, M. Geopolymer/graphene oxide nanocomposites: A review. Mater. Sci. Energy Technol. 2021, 4, 1–12. [Google Scholar]
- Della, V.P.; Kyzas, G.Z.; Ochando-Pulido, J.M. Green synthesis of graphene oxide/alginate composite for highly efficient removal of copper ions. J. Clean. Prod. 2016, 113, 553–560. [Google Scholar]
- Kong, L.; Chen, J.; Lu, J. Geopolymer reinforced with graphene oxide–phosphate glass composite fibres. Compos. Part A Appl. 2018, 109, 188–195. [Google Scholar]
- Alam, M.S.; Islam, M.R. Influence of graphene oxide on the properties of geopolymer composites. J. Mater. Sci. Res. 2017, 6, 39–50. [Google Scholar]
- Liu, J.; Duan, P.; Yu, Q.; Li, W.; Lu, Z. Preparation and properties of graphene oxide–geopolymer nanocomposites: A review. Adv. Appl. Ceram. 2021, 120, 294–309. [Google Scholar]
- Sanjuán, M.Á.; Sanjuán, M.Á.; Martinez-Ramirez, S.; Garcia-Lodeiro, I.; Palomo, A. Graphene oxide geopolymer composites with advanced properties. Nanomaterials 2019, 9, 1011. [Google Scholar]
- Zuo, X.; Zuo, X.; Li, W.; Li, M.; Li, Z.; Wang, H.; Ding, J.; Chen, Y. A review of graphene-based geopolymers: Synthesis, properties and applications. Adv. Appl. Ceram. 2020, 119, 1–20. [Google Scholar]
- Eftekhari, Y.; Eftekhari, Y.; Shirvani, M.; Javidi, M.; Zargar, M. Graphene oxide/epoxy/geopolymer ternary nanocomposite coating for protection of steel in corrosive environments. J. Mater. Sci. 2018, 53, 8647–8663. [Google Scholar]
- Jia, D.; Jia, D.; Chen, Y.; Li, Y.; Wang, Y.; Ye, Q.; Zhang, Y.; Song, X. Geopolymer composite with graphene oxide: Properties and microstructure. J. Alloys Compd. 2018, 746, 327–334. [Google Scholar]
- Pacheco-Torgal, F.; Jalali, S. Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Constr. Build. Mater. 2011, 25, 582–590. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S. Geopolymers: Structures, Processing, Properties and Industrial Applications; Woodhead Publishing: Sawston, UK, 2009; pp. 1–484. [Google Scholar]
- Palomo, A.; Grutzeck, M.W.; Blanco, M.T. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Wong, L.S. Durability Performance of Geopolymer Concrete: A Review. Polymers 2022, 14, 868. [Google Scholar] [CrossRef]
- Morsy, M.S.; Alsayed, S.H.; Abd Elaleem, H.; Elchalakani, M. Recent trends in geopolymer concrete: A review. Constr. Build. Mater. 2020, 231, 117174. [Google Scholar]
- Zainudin, N.H.; Razak, R.A.; Jamaludin, S.B. A review on recent progress in geopolymer nanocomposites. J. Nanomater. 2019, 27, 650–673. [Google Scholar]
- Li, H.; Xiao, J.; Ou, J.; Wang, D. Microstructure of geopolymer prepared from circulating fluidized bed combustion (CFBC) bottom ashes. J. Cent. South Univ. Technol. 2005, 12, 769–773. [Google Scholar]
- Zhang, Z.; Liu, Y.; Chen, Q.; Zhang, L.; Lu, C. Enhancing the properties of fly ash-based geopolymer by adding nanoclay. J. Build. Eng. 2019, 25, 100764. [Google Scholar]
- Zhang, Z.; Liu, Y.; Chen, Q.; Zhang, L.; Lu, C. Properties and microstructure of geopolymer composite modified by hybrid reinforcement of basalt fiber and nanoclay. Constr. Build. Mater. 2018, 189, 525–533. [Google Scholar] [CrossRef]
- Salehi, S.; Shekarchi, M. Effects of nanoclay on mechanical properties of geopolymer composites containing microcrystalline cellulose. Constr. Build. Mater. 2019, 201, 447–454. [Google Scholar]
- Nath, P.; Kumari, A. Synthesis and characterization of geopolymer-based nanocomposite reinforced with modified montmorillonite. J. Build. Eng. 2019, 21, 141–148. [Google Scholar]
- Zhang, M.; Ruan, C.; Liu, Q.; Yang, X. Magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel method. J. Magn. Magn. Mater. 2016, 416, 76–81. [Google Scholar]
- Zhang, Y.; Li, J. Review of magnetic nanoparticles preparation techniques and their applications in biomedicine. J. Nanomater. 2017, 26, 521–537. [Google Scholar]
- Yang, K.; Xu, H.; Cheng, Y.; Zhang, X. Magnetic nanoparticles for enhanced drug delivery in cancer therapy. Curr. Drug Metab. 2017, 18, 447–456. [Google Scholar]
- Wu, M.; Gu, Y.; Yu, C.; Fu, J. Magnetic nanoparticle-based drug/gene delivery systems. Chem. Rev. 2017, 117, 8388–8462. [Google Scholar]
- Hossain, S.; Bose, S.; Cho, J.; Choi, H. Nano/micro hybrid composites: Synthesis, properties and applications. RSC Adv. 2017, 7, 27440–27461. [Google Scholar]
- Yildirim, O.; Al-Sayah, M.H.; Kitis, M. Magnetic nanoparticle-based advanced nanocomposites for environmental remediation applications: A review. J. Environ. Chem. Eng. 2017, 5, 5737–5763. [Google Scholar]
- Wang, S.; Chen, H.; Yu, H.; Sun, H. Magnetic nanocomposites for environmental remediation. J. Hazard. Mater. 2015, 283, 329–343. [Google Scholar]
- Muflikhun, M.; Fitriana, N.; Widayatno, W.B. Recent advances in magnetic nanocomposites for environmental remediation: A review. J. Environ. Chem. Eng. 2020, 8, 103763. [Google Scholar]
- Ghasemzadeh, K.; Shojaei, A.F.; Yazdani, B.; Motamedi, H. Synthesis and Characterization of Geopolymer Composites Reinforced with Nano-SiC Particles. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1397–1407. [Google Scholar]
- Chakraborty, S.; Sahoo, P.; Roy, A. Geopolymer nanocomposites: A review of recent developments. J. Mater. Sci. 2021, 56, 2485–2511. [Google Scholar]
- Tao, F.; Li, Z.; Zhang, J.; Liu, H. A review of the recent progress in synthesis, properties, and applications of magnetic geopolymer composites. Prog. Mater. Sci. 2020, 109, 100616. [Google Scholar]
- Zhang, Z.; Yao, X.; Liu, J. Geopolymer: A review of the synthesis methods, properties and applications. Mater. Sci. Eng. B 2018, 236, 114–126. [Google Scholar]
- Kumar, A.; Kumar, P.; Singh, R.K. Geopolymer Nanocomposites and Its Applications. Nanomaterials 2020, 52, 197–223. [Google Scholar]
- Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E. Geopolymers based on natural resources: Fly ash. Procedia Mater. Sci. 2014, 4, 114–123. [Google Scholar]
- Bernal, S.A.; Provis, J.L.; Rose, V.; van Deventer, J.S. Progress in understanding alkali-activated materials. Cem. Concr. Res. 2013, 78, 110–125. [Google Scholar]
- Tchakouté, H.K.; Elimbi, A.; Djangang, C.N.; Kamseu, E.; Leonelli, C. Assessment of the pozzolanic activity of kaolin waste for the production of geopolymer cements. Appl. Clay Sci. 2014, 97, 245–250. [Google Scholar]
- Zhou, Y.; Ye, G.; Zhang, Y.; Wang, D. The role of alkali concentration in the formation of TiO2-geopolymer nanocomposites with enhanced mechanical properties. Mater. Sci. Eng. A 2018, 731, 444–452. [Google Scholar]
- Yip, C.K.; Lukey, G.C.; Provis, J.L.; van Deventer, J.S. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 2008, 38, 554–564. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Li, J.; Li, J.; Wang, H. Preparation and properties of geopolymer composites reinforced by Al2O3 and TiO2. J. Aust. Ceram. 2020, 56, 301–307. [Google Scholar]
- Xu, H.; Zhu, Y.; Zhang, H.; Gao, X.; Shu, X. Development of a novel TiO2-geopolymer photocatalyst for degradation of organic pollutants. J. Environ. Chem. Eng. 2020, 8, 104236. [Google Scholar]
- Provis, J.L.; Duxson, P.; van Deventer, J.S.J. The role of particle technology in developing sustainable construction materials. Adv. Powder Technol. 2009, 20, 387–394. [Google Scholar] [CrossRef]
- Xu, H.; van Deventer, J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H.; Li, H. Geopolymers for immobilization of Cr(VI)-contaminated soil: Immobilization efficiency and leaching behavior. Environ. Sci. Technol. 2012, 46, 12224–12232. [Google Scholar]
- Nematollahi, B.; Sanjayan, J.G.; Shaikh, F.U.A. Effects of nano-silica addition on properties of geopolymers cured in ambient condition. Constr. Build. Mater. 2014, 50, 231–239. [Google Scholar]
- Provis, J.L.; Bernal, S.A.; Duxson, P.; van Deventer, J.S.J. Geopolymers as precursors to strengthened and stabilized mining waste. J. Hazard. Mater. 2009, 162, 1319–1327. [Google Scholar]
- Bernal, S.A.; Provis, J.L.; Walkley, B.; San Nicolas, R.; Gehman, J.D.; Brice, D.G.; Kilcullen, A.R.; Duxson, P.; van Deventer, J.S.J. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 2012, 42, 432–444. [Google Scholar] [CrossRef]
- Gharzouni, A.; Damidot, D.; Jauberthie, R.; Benhassaine, A.; Qiao, Y. Influence of silica fume on the properties of fly ash-based geopolymer concrete. Constr. Build. Mater. 2012, 27, 241–245. [Google Scholar]
- Wu, C.; Zhang, Y.; Zeng, J.; Lu, J.; Chen, Z.; Zhang, Y. Preparation and properties of inorganic polymer concrete modified with nano-SiO2. Mater. Des. 2013, 47, 720–726. [Google Scholar]
- Li, Y.; Li, W.; Yu, Q.; Li, W.; Zhang, J. Effect of nanosilica on the properties of fly ash-based geopolymer. Constr. Build. Mater. 2012, 29, 548–554. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rattanasak, U.; Sirivivatnanon, V. Influence of fly ash fineness on the chloride penetration of concrete. Constr. Build. Mater. 2007, 21, 356–361. [Google Scholar] [CrossRef]
- Rovnaník, P.; Šimonová, H.; Topolá, L.; Schmid, P.; Keršner, Z. Effect of carbon nanotubes on the mechanical fracture properties of fly ash geopolymer. Procedia Eng. 2016, 151, 321–328. [Google Scholar] [CrossRef]
- Azeem, M.; Junaid, M.T.; Saleem, M.A. Correlated strength enhancement mechanisms in carbon nanotube based geopolymer and OPC binders. Constr. Build. Mater. 2021, 305, 124748. [Google Scholar] [CrossRef]
- Oualit, M.; Irekti, A. Mechanical performance of metakaolin-based geopolymer mortar blended with multi-walled carbon nanotubes. Ceram. Int. 2022, 48, 16188–16195. [Google Scholar] [CrossRef]
- Abbasi, S.M.; Ahmadi, H.; Khalaj, G.; Ghasemi, B. Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes. Ceram. Int. 2016, 42, 15171–15176. [Google Scholar] [CrossRef]
- Li, F.; Yang, Z.; Zheng, A.; Li, S. Properties of modified engineered geopolymer composites incorporating multi-walled carbon Nanotubes(MWCNTs) and granulated blast furnace Slag (GBFS). Ceram. Int. 2021, 47, 14244–14259. [Google Scholar] [CrossRef]
- Alvi, M.A.A.; Khalifeh, M.; Agonafir, M.B. Effect of nanoparticles on properties of geopolymers designed for well cementing applications. J. Pet. Sci. Eng. 2020, 191, 107128. [Google Scholar] [CrossRef]
- Saafi, M.; Andrew, K.; Tang, P.L.; McGhon, D.; Taylor, S.; Rahman, M.; Yang, S.; Zhou, X. Multifunctional properties of carbon nanotube/fly ash geopolymeric Nanocomposites. Constr. Build. Mater. 2013, 49, 46–55. [Google Scholar] [CrossRef]
- Yang, T.; Han, E.; Wang, X.; Wu, D. Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers. Appl. Surf. Sci. 2017, 416, 200–212. [Google Scholar] [CrossRef]
- Li, F.; Liu, L.; Yang, Z.; Li, S. Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste Granulated Blast Furnace Slag (GBFS) and functionalized Multi-Walled Carbon Nanotubes (MWCNTs). J. Hazard. Mater. 2021, 401, 123339. [Google Scholar] [CrossRef]
- Jittabuta, P.; Horpibulsuk, S. Physical and Microstructure Properties of Geopolymer Nanocomposite Reinforced with Carbon Nanotubes. Mater. Today Proc. 2019, 17, 1682–1692. [Google Scholar] [CrossRef]
- Kusak, I.; Lunaka, M.; Rovnanik, P. Electric conductivity changes in geopolymer samples with added carbon nanotubes. Procedia Eng. 2016, 151, 157–161. [Google Scholar] [CrossRef]
- Chen, J.; Akono, A.T. Influence of multi-walled carbon nanotubes on the fracture response and phase distribution of metakaolin-based potassium geopolymers. J. Mater. Sci. 2021, 56, 19403–19424. [Google Scholar] [CrossRef]
- Zhu, Y.; Qian, Y.; Zhang, L.; Bai, B.; Wang, X.; Li, J.; Bi, S.; Kong, L.; Liu, W.; Zhang, L. Enhanced thermal conductivity of geopolymer nanocomposites by incorporating interface engineered carbon nanotubes. Compos. Commun. 2021, 24, 100691. [Google Scholar] [CrossRef]
- Zhang, Y.J.; He, P.Y.; Zhang, Y.X.; Chen, H. A novel electroconductive graphene/fly ash-based geopolymer composite and its photocatalytic performance. Chem. Eng. J. 2018, 334, 2459–2466. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Yang, M.Y.; Zhang, L.; Zhang, K.; Kang, L. A new graphene/geopolymer nanocomposite for degradation of dye wastewater. Integr. Ferroelectr. 2016, 171, 38–45. [Google Scholar] [CrossRef]
- Sajjad, U.; Sheikh, M.N.; Hadi, M.N.S. Experimental study of the effect of graphene on properties of ambient-cured slag and fly ash-based geopolymer paste and mortar. Constr. Build. Mater. 2021, 313, 125403. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. Graphene nanoplatelet-fly ash based geopolymer composites. Cem. Concr. Res. 2015, 76, 222–231. [Google Scholar] [CrossRef]
- Lertcumfu, N.; Jaita, P.; Thammarong, S.; Lamkhao, S.; Tandorn, S.; Randorn, C.; Tunkasiri, T.; Rujijanagul, G. Influence of graphene oxide additive on physical, microstructure, adsorption, and photocatalytic properties of calcined kaolinite-based geopolymer ceramic composites. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125080. [Google Scholar] [CrossRef]
- Maglad, A.M.; Zaid, O.; Arbili, M.M.; Ascensão, G.; Șerbănoiu, A.A.; Grădinaru, C.M.; García, R.M.; Qaidi, S.M.A.; Althoey, F.; de Prado-Gil, J. A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide. Buildings 2022, 12, 1066. [Google Scholar] [CrossRef]
- Bellum, R.R.; Muniraj, K.; Indukuri, C.S.R.; Madduru, S.R.C. Investigation on Performance Enhancement of Fly ash—GGBFS Based Graphene Geopolymer Concrete. J. Build. Eng. 2020, 32, 101659. [Google Scholar] [CrossRef]
- Amri, A.; Najib, A.A.; Olivia, M.; Altarawneh, M.; Syam, A.; Rahman, M.M.; Saputro, S.; Wahyuadi, J.; Jiang, Z.T. Physicochemical properties of geopolymer composites with DFT calculations of in-situ reduction of graphene oxide. Ceram. Int. 2021, 47, 13440–13445. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, G. Effect of reduced graphene oxide on the early-age mechanical properties of geopolymer cement. Mater. Lett. 2020, 276, 128223. [Google Scholar] [CrossRef]
- Shao, S.; Ma, S.; He, P.; Jia, D.; Yang, H.; Duan, X.; Zhou, Y. In-situ reduced graphene oxide/geopolymer composites for efficient Cs+ immobilization. Open Ceram. 2021, 6, 100095. [Google Scholar] [CrossRef]
- Vishnu, N.; Kolli, R.; Ravella, D.P. Studies on Self-Compacting geopolymer concrete containing fly ash, GGBS, wollastonite and graphene oxide. Mater. Today Proc. 2021, 43, 2422–2427. [Google Scholar] [CrossRef]
- Yan, S.; He, P.; Jia, D.; Duan, X.; Yang, Z.; Wang, S.; Zhou, Y. Crystallization kinetics and microstructure evolution of reduced graphene oxide/geopolymer composites. J. Eur. Ceram. Soc. 2016, 36, 2601–2609. [Google Scholar] [CrossRef]
- Yan, S.; He, P.; Jia, D.; Yang, Z.; Duan, X.; Wang, S.; Zhou, Y. In situ fabrication and characterization of graphene/geopolymer composites. Ceram. Int. 2015, 41, 11242–11250. [Google Scholar] [CrossRef]
- Yan, S.; He, P.; Jia, D.; Yang, Z.; Duan, X.; Wang, S.; Zhou, Y. Effect of reduced graphene oxide content on the microstructure and mechanical properties of graphene–geopolymer nanocomposites. Ceram. Int. 2016, 42, 752–758. [Google Scholar] [CrossRef]
- Assaedi, H.; Shaikh, F.U.A.; Low, I.M. Effect of nano-clay on mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc. 2016, 4, 19–28. [Google Scholar] [CrossRef]
- Ravitheja, A.; Kumar, N.L.N.K. A study on the effect of nano clay and GGBS on the strength properties of fly ash based geopolymers. Mater. Today Proc. 2019, 19, 273–276. [Google Scholar] [CrossRef]
- Hassaan, M.M.; Khater, H.M.; El-Mahllawy, M.S.; El Nagar, A.M. Production of geopolymer composites enhanced by nano-kaolin material. J. Adv. Ceram. 2015, 4, 245–252. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos. B Eng. 2019, 176, 107290. [Google Scholar] [CrossRef]
- Al-husseiny, R.A.; Ebrahim, S.E. Synthesis of nano-magnetite and magnetite/synthetic geopolymer nano-porous composite for application as a novel adsorbent. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100700. [Google Scholar] [CrossRef]
- Rossatto, D.L.; Netto, M.S.; Jahn, S.L.; Mallmann, E.S.; Dotto, G.L.; Foletto, E.L. Highly efficient adsorption performance of a novel magnetic geopolymer/Fe3O4 composite towards removal of aqueous acid green 16 dye. J. Environ. Chem. Eng. 2020, 8, 103804. [Google Scholar] [CrossRef]
- Khan, H.; Hussain, S.; Zahoor, R.; Arshad, M.; Umar, M.; Marwat, M.A.; Khan, A.; Khan, J.R.; Haleem, M.A. Novel modeling and optimization framework for Navy Blue adsorption onto eco-friendly magnetic geopolymer composite. Environ. Res. 2023, 216, 114346. [Google Scholar] [CrossRef]
- Silveira Maranhão, F.d.; Gomes, F.; Thode, S.; Das, D.B.; Pereira, E.; Lima, N.; Carvalho, F.; Aboelkheir, M.; Costa, V.; Pal, K. Oil Spill Sorber Based on Extrinsically Magnetizable Porous Geopolymer. Materials 2021, 14, 5641. [Google Scholar] [CrossRef]
- Maleki, A.; Hajizadeh, Z.; Sharifi, V.; Emdadi, Z. A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. J. Clean. Prod. 2019, 215, 1233–1245. [Google Scholar] [CrossRef]
- Maiti, M.; Sarkar, M.; Maiti, S.; Malik, M.A.; Xu, S. Modification of geopolymer with size controlled TiO2 nanoparticle for enhanced durability and catalytic dye degradation under UV light. J. Clean. Prod. 2020, 255, 120183. [Google Scholar] [CrossRef]
- Mohamed, H.; Deutou, J.G.N.; Kaze, C.R.; Moungam, L.M.B.; Kamseu, E.; Melo, U.C.; Leonelli, C. Mechanical and microstructural properties of geopolymer mortars from meta-halloysite: Effect of titanium dioxide TiO2 (anatase and rutile) content. SN Appl. Sci. 2020, 2, 1573. [Google Scholar] [CrossRef]
- Falah, M.; MacKenzie, K.J.D.; Knibbe, R.; Page, S.J.; Hanna, J.V. New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants. J. Hazard. Mater. 2016, 318, 772–782. [Google Scholar] [CrossRef]
- Kantarcı, F.; Maras, M.M. Formulation of a novel nano TiO2-modified geopolymer grout for application in damaged beam-column joints. Constr. Build. Mater. 2022, 317, 125929. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Luo, W.; Zhou, W. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Constr. Build Mater. 2016, 106, 115–125. [Google Scholar] [CrossRef]
- Khatib, K.; Lahmyed, L.; El Azhari, M. Synthesis, Characterization, and Application of Geopolymer/TiO2 Nanoparticles Composite for Efficient Removal of Cu(II) and Cd(II) Ions from Aqueous Media. Minerals 2022, 12, 1445. [Google Scholar] [CrossRef]
- Li, M.; Sun, J.; Li, L.; Meng, L.; Wang, S.; Wei, J.; Mao, J. Effect of nanosilica on fiber pullout behavior and mechanical properties of strain hardening ultra-high performance concrete. Constr. Build. Mater. 2023, 367, 130255. [Google Scholar] [CrossRef]
- Çevik, A.; Alzeebaree, R.; Humur, G.; Niş, A.; Gülşan, M.E. Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceram. Int. 2018, 44, 12253–12264. [Google Scholar] [CrossRef]
- Adak, D.; Sarkar, M.; Mandal, S. Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr. Build. Mater. 2017, 135, 430–439. [Google Scholar] [CrossRef]
- Luo, H.L.; Lin, D.F.; Chen, S.C. Improving the properties of geopolymer containing oil-contaminated clay, metakaolin, and blast furnace slag by applying nano-SiO2. Environ. Technol. 2017, 38, 1619–1628. [Google Scholar] [CrossRef] [PubMed]
- Rahmawati, C.; Aprilia, S.; Saidi, T.; Aulia, T.B.; Hadi, A.E. The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement. Polymers 2021, 13, 2178. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Zhang, P.; Wu, J.; Sha, D. Mechanical Properties of Nano-SiO2 Reinforced Geopolymer Concrete under the Coupling Effect of a Wet–Thermal and Chloride Salt Environment. Polymers 2022, 14, 2298. [Google Scholar] [CrossRef] [PubMed]
- Their, J.M.; Özakça, M. Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. Constr. Build. Mater. 2018, 180, 12–22. [Google Scholar] [CrossRef]
- Sainia, G.; Vattipallib, U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Stud. Constr. Mater. 2020, 12, e00352. [Google Scholar] [CrossRef]
- Gomez-Zamorano, L.Y.; Vega-Cordero, E.; Struble, L. Composite geopolymers of metakaolin and geothermal nanosilica waste. Constr. Build. Mater. 2016, 115, 269–276. [Google Scholar] [CrossRef]
- Deb, P.S.; Sarker, P.K.; Barbhuiya, S. Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cem. Concr. Compos. 2016, 72, 235–245. [Google Scholar] [CrossRef]
- Cai, J.; Li, X. Thermoelectric properties of geopolymers with the addition of nano-silicon carbide (SiC) powder. Ceram. Int. 2021, 47, 19752–19759. [Google Scholar] [CrossRef]
- Assaedi, H.; Alomayri, T.; Kaze, C.R.; Jindal, B.B.; Subaer, S.; Shaikh, F.; Alraddadi, S. Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3. Constr. Build. Mater. 2020, 252, 119137. [Google Scholar] [CrossRef]
- Nejad, F.M.; Tolouei, M.; Nazari, H.; Naderan, A. Effects of Calcium Carbonate Nanoparticles and Fly Ash on Mechanical and Permeability Properties of Concrete. Adv. Civ. Eng. Mater. 2018, 7, 651–668. [Google Scholar] [CrossRef]
- Zidi, Z.; Ltifi, M.; Ayadi, Z.B.; El Mir, L. Synthesis of nano-alumina and their effect on structure, mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc. 2019, 7, 524–535. [Google Scholar] [CrossRef]
- Saukani, M.; Lisdawati, A.N.; Irawan, H.; Iqbal, R.M.; Nurjaya, D.M.; Astutiningsih, S. Effect of Nano-Zirconia Addition on Mechanical Properties of Metakaolin-Based Geopolymer. J. Compos. Sci. 2022, 6, 293. [Google Scholar] [CrossRef]
- Zidi, Z.; Ltifi, M.; Ayadi, Z.B.; EL Mir, L.; Nóvoa, X.R. Effect of nano-ZnO on mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- De Silva, R.T.; Yu, L.; Wang, D.; Chen, X.; Liu, Y.; Zhang, Z. Carbon nanotube reinforced geopolymer composites: An experimental study on mechanical and electromagnetic interference shielding properties. J. Clean. Prod. 2018, 198, 661–670. [Google Scholar]
- Qian, Z.; Li, H.; Li, Y.; Chen, Y.; Chen, C.; Chen, X. Effect of SiO2 nanoparticles on the microstructure and mechanical properties of fly ash-based geopolymer. J. Mater. Sci. 2017, 52, 9172–9185. [Google Scholar]
- Li, Y.; Qian, Z.; Li, H.; Chen, Y.; Chen, C.; Chen, X. Effect of Al2O3 nanoparticles on the mechanical and thermal properties of fly ash-based geopolymer composites. Constr. Build. Mater. 2017, 154, 278–289. [Google Scholar]
- Ismail, I.; Kumar, S.; Bernal, S.A.; Provis, J.L.; van Deventer, J.S.J. Effects of nano-SiO2 on geopolymer cement properties: A review. Constr. Build. Mater. 2019, 229, 116969. [Google Scholar]
- Ahmed, H.U.; Mohammed, A.A.; Mohammed, A.S. The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review. J. Build. Eng. 2022, 49, 104062. [Google Scholar] [CrossRef]
- Huang, T.; Sun, Z. Advances in multifunctional graphene-geopolymer composites. Constr. Build. Mater. 2021, 272, 121619. [Google Scholar] [CrossRef]
- Łach, M. Geopolymer Foams—Will They Ever Become a Viable Alternative to Popular Insulation Materials?—A Critical Opinion. Materials 2021, 14, 3568. [Google Scholar] [CrossRef]
- Matalkah, F.; Ababneh, A.; Aqel, R. Effects of nanomaterials on mechanical properties, durability characteristics and microstructural features of alkali-activated binders: A comprehensive review. Constr. Build. Mater. 2022, 336, 127545. [Google Scholar] [CrossRef]
- de Oliveira, C.T.; Andrade Oliveira, G.G. What Circular economy indicators really measure? An overview of circular economy principles and sustainable development goals. Resour. Conserv. Recycl. 2023, 190, 106850. [Google Scholar] [CrossRef]
- Bogers, M.; Biermann, F.; Kalfagianni, A.; Kim, R.E.; Treep, J.; de Vos, M.G. The impact of the Sustainable Development Goals on a network of 276 international organizations. Glob. Environ. Chang. 2022, 76, 102567. [Google Scholar] [CrossRef]
- Arora-Jonsson, S. The sustainable development goals: A universalist promise for the future. Futures 2023, 146, 103087. [Google Scholar] [CrossRef]
- Chola, R.K.V.; Parambil, F.O.; Panakkal, T.; Chelaveettil, B.M.; Kumari, P.; Peedikakkal, S.V. Clean technology for sustainable development by geopolymer materials. Phys. Sci. Rev. 2022, 7, 100445. [Google Scholar]
- Shehata, N.; Mohamed, O.A.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Sci. Total Environ. 2022, 836, 155577. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Dev, N.; Rahman, I.; Nigam, M.; Ahmed, M.; Mallick, J. Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries. Crystals 2022, 12, 514. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Firdous, R.; Nikravan, M.; Mancke, R.; Vöge, C.; Stephan, D. Assessment of environmental, economic and technical performance of geopolymer concrete: A case study. J. Mater. Sci. 2022, 57, 18711–18725. [Google Scholar] [CrossRef]
- Akhtar, N.; Ahmad, T.; Husain, D.; Majdi, A.; Alam, T.; Husain, N.; Wayal, A.K.S. Ecological footprint and economic assessment of conventional and geopolymer concrete for sustainable construction. J. Clean. Prod. 2022, 380, 134910. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, W.; Ye, J.; Muroki, M.; Pereira, P. Ecosystem carbon sequestration service supports the Sustainable Development Goals progress. J. Environ. Manag. 2023, 330, 117155. [Google Scholar] [CrossRef] [PubMed]
- Samuvel Raj, R.; Prince Arulraj, G.; Anand, N.; Kanagaraj, B.; Lubloy, E.; Naser, M.Z. Nanomaterials in geopolymer composites: A review. DIBE 2023, 13, 100114. [Google Scholar] [CrossRef]
- Sastry, K.G.K.; Sahitya, P.; Ravitheja, A. Influence of nano TiO2 on strength and durability properties of geopolymer concrete. Mater. Today Proc. 2021, 45, 1017–1025. [Google Scholar] [CrossRef]
- Chen, K.; Wu, D.; Chen, H.X.; Zhang, G.; Yao, R.; Pan, C.; Zhang, Z. Development of low-calcium fly ash-based geopolymer mortar using nanosilica and hybrid fibers. Ceram. Int. 2021, 47, 21791–21806. [Google Scholar] [CrossRef]
- Růžek, V.; Dostayeva, A.M.; Walter, J.; Grab, T.; Korniejenko, K. Carbon Fiber-Reinforced Geopolymer Composites: A Review. Fibers 2023, 11, 17. [Google Scholar] [CrossRef]
- Chintalapudi, K.; Rao Pannem, R.M. An intense review on the performance of Graphene Oxide and reduced Graphene Oxide in an admixed cement system. Constr. Build. Mater. 2020, 259, 120598. [Google Scholar] [CrossRef]
- Khater, H.M.; El-Nagar, A.M. Preparation of sustainable of eco-friendly MWCNT geopolymer composites with superior sulfate resistance. Adv. Compos. Hybrid Mater. 2020, 3, 375–389. [Google Scholar] [CrossRef]
- Saeed, A.; Najm, H.M.; Hassan, A.; Sabri, M.M.S.; Qaidi, S.; Mashaan, N.S.; Ansari, K. Properties and Applications of Geopolymer Composites: A Review Study of Mechanical and Microstructural Properties. Materials 2022, 15, 8250. [Google Scholar] [CrossRef]
- Su, Z.; Hou, W.; Sun, Z. Recent advances in carbon nanotube-geopolymer composite. Constr. Build. Mater. 2020, 252, 118940. [Google Scholar] [CrossRef]
- Bai, B.; Zhu, Y.; Niu, M.; Ding, E.; Bi, S.; Yin, M.; Liu, W.; Sun, L.; Zhang, L. Modulation of electromagnetic absorption and shielding properties of geopolymer nanocomposites by designing core–shell structure of carbon nanotubes. Ceram. Int. 2022, 48, 26098–26106. [Google Scholar] [CrossRef]
- Zhu, Y.; Bai, B.; Ding, E.; Bi, S.; Liu, W.; Zhang, L. Enhanced electromagnetic interference shielding performance of geopolymer nanocomposites by incorporating carbon nanotubes with controllable silica shell. Ceram. Int. 2022, 48, 11103–11110. [Google Scholar] [CrossRef]
- Kirthika, S.K.; Goel, G.; Matthews, A.; Goel, S. Review of the untapped potentials of antimicrobial materials in the construction sector. Prog. Mater. Sci. 2023, 133, 101065. [Google Scholar] [CrossRef]
- Adak, D.; Sarkar, M.; Maiti, M.; Tamang, A.; Mandal, S.; Chattopadhyay, B. Anti-microbial efficiency of nano silver–silica modified geopolymer mortar for eco-friendly green construction technology. RSC Adv. 2015, 5, 64037–64045. [Google Scholar] [CrossRef]
- Tuntachon, S.; Kamwilaisak, K.; Somdee, T.; Mongkoltanaruk, W.; Sata, V.; Boonserm, K.; Wongsa, A.; Chindaprasirt, P. Resistance to algae and fungi formation of high calcium fly ash geopolymer paste containing TiO2. J. Build. Eng. 2019, 25, 100817. [Google Scholar] [CrossRef]
- Abdalla, J.A.; Thomas, B.S.; Hawileh, R.A.; Yang, J.; Jindal, B.B.; Ariyachandra, E. Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete. Clean. Mater. 2022, 4, 100061. [Google Scholar] [CrossRef]
- de Koster, S.A.L.; Mors, R.M.; Nugteren, H.W.; Jonkers, H.M.; Meesters, G.M.H.; van Ommen, J.R. Geopolymer Coating of Bacteria-containing Granules for Use in Self-healing Concrete. Procedia Eng. 2015, 102, 475–484. [Google Scholar] [CrossRef]
- Mahmood, A.; Noman, M.T.; Pechočiaková, M.; Amor, N.; Petrů, M.; Abdelkader, M.; Militký, J.; Sozcu, S.; Hassan, S.Z.U. Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering. Polymers 2021, 13, 2099. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, P.; Wang, J.; Wang, K.; Zhang, T. Interfacial properties of geopolymer mortar and concrete substrate: Effect of polyvinyl alcohol fiber and nano-SiO2 contents. Constr. Build. Mater. 2022, 315, 125735. [Google Scholar] [CrossRef]
- Intarabut, D.; Sukontasukkul, P.; Phoo-ngernkham, T.; Zhang, H.; Yoo, D.-Y.; Limkatanyu, S.; Chindaprasirt, P. Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials 2022, 12, 943. [Google Scholar] [CrossRef] [PubMed]
- Kotop, M.A.; El-Feky, M.S.; Alharbi, Y.R.; Abadel, A.A.; Binyahya, A.S. Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Eng. J. 2021, 12, 3641–3647. [Google Scholar] [CrossRef]
- Rahman, A.S.; Jackson, R.; Radford, D.W. Improved toughness and delamination resistance in continuous fiber reinforced geopolymer composites via incorporation of nano-fillers. Cem. Concr. Compos. 2020, 108, 103496. [Google Scholar] [CrossRef]
- Sáez-Pérez, M.P.; Durán-Suárez, J.A.; Castro-Gomes, J. Improving the Behaviour of Green Concrete Geopolymers Using Different HEMP Preservation Conditions (Fresh and Wet). Minerals 2022, 12, 1530. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Hayder, G.; Baloo, L.; Noor, A.; Yaro, N.S.A.; Saeed, A.A.H.; Lawal, I.M.; Birniwa, A.H.; Usman, A.K. A Systematic Literature Review on Waste-to-Resource Potential of Palm Oil Clinker for Sustainable Engineering and Environmental Applications. Materials 2021, 14, 4456. [Google Scholar] [CrossRef] [PubMed]
- Korniejenko, K.; Pławecka, K.; Kozub, B. An Overview for Modern Energy-Efficient Solutions for Lunar and Martian Habitats Made Based on Geopolymers Composites and 3D Printing Technology. Energies 2022, 15, 9322. [Google Scholar] [CrossRef]
- Shakor, P.; Chu, S.H.; Puzatova, A.; Dini, E. Review of binder jetting 3D printing in the construction industry. Prog. Addit. Manuf. 2022, 7, 643–669. [Google Scholar] [CrossRef]
- Lazorenko, G.; Kasprzhitskii, A. Geopolymer additive manufacturing: A review. Addit. Manuf. 2022, 55, 102782. [Google Scholar] [CrossRef]
- Zhong, J.; Zhou, G.-X.; He, P.-G.; Yang, Z.-H.; Jia, D.-C. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon 2017, 117, 421–426. [Google Scholar] [CrossRef]
- Zhou, G.-X.; Li, C.; Zhao, Z.; Qi, Y.-Z.; Yang, Z.-H.; Jia, D.-C.; Zhong, J.; Zhou, Y. 3D printing geopolymer nanocomposites structure: Graphene oxide size effects on a reactive matrix. Carbon 2020, 164, 215–223. [Google Scholar] [CrossRef]
- Imtiaz, L.; Rehman, S.K.U.; Ali Memon, S.; Khizar Khan, M.; Faisal Javed, M. A Review of Recent Developments and Advances in Eco-Friendly Geopolymer Concrete. Appl. Sci. 2020, 10, 7838. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S.; Abdullah, M.M.A.B.; Razak, R.A.; Vizureanu, P.; Sandu, A.V.; Matasaru, P.-D. A State-of-the-Art Review on Innovative Geopolymer Composites Designed for Water and Wastewater Treatment. Materials 2021, 14, 7456. [Google Scholar] [CrossRef]
- Taki, K.; Raval, N.P.; Kumar, M. Utilization of sewage sludge derived magnetized geopolymeric adsorbent for geogenic arsenic removal: A sustainable groundwater in-situ treatment perspective. J. Clean. Prod. 2021, 295, 126466. [Google Scholar] [CrossRef]
- Filon, F.L.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharm. 2015, 72, 310–322. [Google Scholar] [CrossRef] [PubMed]
Nanoadditive | Investigated Effect | Source |
---|---|---|
Nano-SiO2 | Adding nano-SiO2 to fly-ash-based geopolymers can enhance the activity of fly ash, thus accelerating the geopolymerization process, increasing the length of the C–S hydrogen gel chain, and producing a small particle-filling effect. Finally, the fly ash and nano-SiO2 geopolymerize to form a three-site reticular inorganic gel material with Si–Al–O cross-linking. | [21] |
The higher the incorporation of nano-SiO2, the shorter is the setting time. | [22] | |
The dry shrinkage performance of the geopolymer improved, and the improvement due to nano-SiO2 was greater than that due to nano-γ-Al2O3. | [30] | |
With an increase in the content of nano-SiO2, the freezing–thawing resistance of the geopolymer is gradually strengthened at first and then gradually declines. After mixing with nano-SiO2, the geopolymer becomes denser, the pore size inside the material decreases, and the number of pores decreases, which reduces the damage to the internal structure during the freezing–thawing cycle. | [31] | |
Nanocellulose | Addition of less than 0.5% by weight of nanocellulose crystals promotes mechanical properties; on the other hand, higher concentrations of this additive protect the geopolymer against cracking in unstable curing conditions | [32] |
Nanographite | A 3D-printed geopolymer with 1% wt. of NGPs increased the flexural strength by 89% and 46% compared to the same 3D-printed and casted geopolymer without any NGPs, respectively. The same increase for compressive strength was 28% and 12%. Moreover, the geopolymer mix containing 1% wt. of NGPs demonstrated the best shape retention and buildability. | [27] |
Nano-CaCO3 | The use of 3% wt. nano-CaCO3 in basalt-fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% wt. nano-CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. | [28] |
Nano-Al2O3 | Addition of up to 2% wt. nano-Al2O3 increases the mechanical properties of geopolymer concrete, while the addition of 1%, 2% by weight is optimal for obtaining improvement. | [33,34] |
Addition of 0.75 wt. nano-aluminium improved compressive strength both in the early stage of the test (7 days) and after 28 days. Adding more nanoparticles worsened this property. | [35] |
Nanoparticles | Matrix | Investigated Effect | Source |
---|---|---|---|
Nanoclay | Volcanic tuff | The compressive strength of the geopolymer with the addition of nanoclay increases with heating up to 300 °C. Above this temperature, it decreases by about 20%. | [46] |
Fly-ash slag | The addition of nanoclay in the amount of 6% wt. improves the compressive strength by 26% in relation to the base sample. In addition, this strength increases proportionally after exposure to a higher temperature of 200 °C; as the temperature increases further, the strength decreases by about 15%. | [47] |
Nanoadditive | Observed Effect | Source |
---|---|---|
Carbon nanotubes | Enhanced compressive strength, flexural strength, and mechanical fracture parameters | [117,118,119,120,121,122,123,124] |
Enhanced Young’s modulus and flexural toughness | [123] | |
Decreased sorption properties and setting time | [125] | |
Decreased bulk density and porosity | [126] | |
Enhanced relative permittivity | [127] | |
Enhanced fracture energy, piezoresistive response, and electrical conductivity | [123] | |
Increased stiffness and fracture toughness | [128] | |
Increased thermal conductivity | [129] | |
Graphene | Improved electroconductivity, cycling durability, structure stability, and photocatalytic activity | [130] |
Added photocatalytic activity | [131] | |
Decreased workability and enhanced compressive strength | [132] | |
Enhanced stiffness, toughness, flexural strength, and compressive strength | [133] | |
Graphene oxide | Enhanced adsorption properties and photocatalytic activity | [134] |
Improved thermal conductivity and permeability | [135] | |
Increased compressive strength | [135,136,137,138,139] | |
Improved tensile strength and corrosion resistance | [140] | |
Enhanced modulus of elasticity, chloride permeability, and microstructure density | [136] | |
Enhanced ion-immobilization ability | [139] | |
Enhanced flexural strength and fracture toughness | [141,142,143] | |
Nanoclay | Enhanced compressive and flexural strength | [144,145,146] |
Enhanced rheological properties | [147] | |
Magnetic nanoparticles | Added magnetic properties | [148,149,150,151] |
Enhanced adsorption properties | [148,150,152] | |
Enhanced removal efficiency and high recyclability | [149] | |
Titanium dioxide | Reduced roughness and swelling ability | [153] |
Reduced porosity | [153,154] | |
Enhanced photocatalytic activity | [153,155] | |
Enhanced compressive and flexural strength | [153,154,155,156,157] | |
More compact structure, enhanced ductility, and greater load-carrying capacity | [157] | |
Enhanced adsorption properties | [158] | |
Enhanced carbonation resistance; reduced drying shrinkage | [157] | |
Nanosilica | Enhanced tensile toughness, compressive strength, elastic modulus, and ductility | [159,160,161,162,163,164,165,166] |
Enhanced acid resistance, lower sorption properties | [167] | |
Enhanced durability; reduced porosity | [168] | |
Decreased flowability and setting time | [161] | |
Reduced gas permeability | [164] | |
Enhanced thermal stability | [165] | |
Nano-silicon carbide | Enhanced thermoelectric properties | [169] |
Calcium carbonate nanoparticles | Increased hardness, compressive strength, and flexural strength | [170,171] |
Lower water penetration; decreased water adsorption | [171] | |
Decreased porosity | [171] | |
Nanoalumina | Reduced porosity, setting time, optical transmission, and water absorption; enhanced compressive strength | [172] |
Nanozirconia | Enhanced compressive strength, ultrasonic pulse velocity, and thermal properties | [173,174] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drabczyk, A.; Kudłacik-Kramarczyk, S.; Korniejenko, K.; Figiela, B.; Furtos, G. Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development. Materials 2023, 16, 3478. https://doi.org/10.3390/ma16093478
Drabczyk A, Kudłacik-Kramarczyk S, Korniejenko K, Figiela B, Furtos G. Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development. Materials. 2023; 16(9):3478. https://doi.org/10.3390/ma16093478
Chicago/Turabian StyleDrabczyk, Anna, Sonia Kudłacik-Kramarczyk, Kinga Korniejenko, Beata Figiela, and Gabriel Furtos. 2023. "Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development" Materials 16, no. 9: 3478. https://doi.org/10.3390/ma16093478
APA StyleDrabczyk, A., Kudłacik-Kramarczyk, S., Korniejenko, K., Figiela, B., & Furtos, G. (2023). Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development. Materials, 16(9), 3478. https://doi.org/10.3390/ma16093478