Production of AC from Bamboo, Orange, and Paulownia Waste—Influence of Activation Gas and Biomass Maturation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Experimental Apparatus
2.3. Pyrolysis and Activation
3. Results and Discussion
3.1. Analysis and Performance
3.2. Pore Size Distribution
3.3. Surface Area and Pore Volume
3.4. Particle Morphology Characterization
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Activated carbon |
ADS | Adsorption |
BET | Brunauer–Emmett–Teller equation |
BJH | Barrett, Joyner, and Halenda theory |
COD | Chemical Oxygen Demand |
DES | Desorption |
DTG | Derivative TG |
PTFE | Polytetrafluoroethylene |
SEM | Scanning Electron Microscope |
TDS | Total Dissolved Solids |
TG | Thermogravimetric curve |
Internal Notation | |
Ac | Activation |
B | Bamboo stem |
Bo | Burn-off |
C | Activation gas CO2 |
O | Orange peel |
P | Paulownia wood |
P 1,3,5,8 | P with 1, 3, 5, and 8 years maturation |
Py | Pyrolyzation |
R | Precursor residue |
V | Activation steam |
Y | Yield |
References
- Rodríguez-Reinoso, F.; Molina-Sabio, M. Textural and chemical characterization of microporous carbons. Adv. Colloid Interface 1998, 76, 271–294. [Google Scholar] [CrossRef]
- Lapuerta, M.; Hernandez, J.; Pazo, A.; Lopez, J. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions. Fuel Proc. Technol. 2008, 89, 828–837. [Google Scholar] [CrossRef]
- Devarly, P.; Kartika, Y.; Indraswati, N.; Ismadji, S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem. Eng. J. 2008, 140, 32–42. [Google Scholar] [CrossRef]
- Halbus, A.F.; Athab, Z.H.; Hussein, F.H. Review on preparation and characterization of activated carbon from low cost waste materials. Egypt. J. Chem. 2021, 64, 7155–7168. [Google Scholar] [CrossRef]
- Somparn, W.; Panyoyai, N.; Khamdaeng, T.; Tippayawong, N.; Tantikul, S.; Wongsiriamnuay, T. Effect of process conditions on properties of biochar from agricultural residues. IOP Conf. Ser. Earth Environ. Sci. 2020, 463, 012005. [Google Scholar] [CrossRef]
- Dubinin, M.M.; Plavnik, G.M.; Zaverina, E.D. Integrated study of the porous structure of active carbons from carbonized sucrose. Carbon 1964, 2, 261–268. [Google Scholar] [CrossRef]
- Ikram, M.; Zahoor, M.; Batiha, G.E.-S. Biodegradation and decolorization of textile dyes by bacterial strains: A biological approach for wastewater treatment. Z. Für Phys. Chem. 2021, 235, 1381–1393. [Google Scholar] [CrossRef]
- Khayam, S.; Zahoor, M.; Khan, E.; Shah, M. Reduction of keto group in drimarene blue by aspergillus niger: A predominant reason for subsequent decolorization. Fresen. Environ. Bull. 2020, 29, 1397–1410. [Google Scholar]
- Ikram, M.; Zahoor, M.; Khan, E.; Khayam, S. Biodegradation of Novacron Turqueiose (Reactive Blue 21) by Pseudomonas aeruginosa. J. Chem. Soc. Pak. 2020, 42, 737–745. [Google Scholar]
- Wilkins, M.R.; Suryawati, L.; Maness, N.O.; Chrz, D. Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World J. Microb. Biot. 2007, 23, 1161–1168. [Google Scholar] [CrossRef]
- Ghani, W.A.; Alias, A.B.; Savory, R.M.; Cliffe, K.R. Co-combustion of agricultural residues with coal in a fluidized bed combustor. Waste Manag. 2009, 29, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Tripodo, M.M.; Lanuzza, F.; Micali, G.; Coppolino, R.; Nucita, F. Citrus waste recovery: A new environmentally friendly procedure to obtain animal feed. Bioresource Technol. 2004, 91, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.A.S.; Li, Q.; Thompson, I.P. Biorefinery of waste orange peel. Crc. Cr. Rev. Biotechn. 2010, 30, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Do, D.D. The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon 1997, 35, 1723–1732. [Google Scholar] [CrossRef]
- Adibah, W.; Waiho, K.; Azwar, E.; Fazhan, H.; Peng, W.; Dahlianis, S.; Tabatabaei, M.; Nai Yuh, P.; Almomani, F.; Aghbashlo, M.; et al. A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. Chemosphere 2022, 288, 2. [Google Scholar] [CrossRef]
- Pokhrel, D.; Viraraghavan, T. Treatment of pulp and paper mill wastewater—A review. Sci. Total Environ. 2004, 333, 37–58. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, A. Adsorption—from theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Khan, M.S.; Bibi, W.; Zekker, I.; Burlakovs, J.; Ghangrekar, M.M.; Bhowmick, G.D.; Kallistova, A.; Pimenov, N.; Zahoor, M. Preparation of Activated Carbon from the Wood of Paulownia tomentosa as an Efficient Adsorbent for the Removal of Acid Red 4 and Methylene Blue Present in Wastewater. Water 2021, 13, 1453. [Google Scholar] [CrossRef]
- Vazquez-Santos, M.B.; Martinez-Alonso, A.; Tascon, J.M.D. Effects of phosphoric acid as additive in the preparation of activated carbon fibers from poly (p-phenylene benzobisoxazole) by carbon dioxide activation. J. Anal. Appl. Pyrol. 2012, 95, 68–74. [Google Scholar] [CrossRef]
- Alcaniz-Monge, J.; Perez-Cadenas, M.; Marco-Lozar, J.P. Removal of harmful volatile organic compounds on activated carbon fibres prepared by steam or carbon dioxide activation. J. P. Adsorpt. Sci. Technol. 2012, 30, 473–482. [Google Scholar] [CrossRef]
- Wang, R.; Amano, Y.; Machida, M. Surface properties and water vapor adsorption-desorption characteristics of bamboo-based activated carbon. J. Anal Appl. Pyrol. 2013, 104, 667–674. [Google Scholar] [CrossRef]
- Mopoung, S.; Dejang, N. Activated carbon preparation from eucalyptus wood chips using continuous carbonization-steam activation process in a batch intermittent rotary kiln. Sci. Rep. 2021, 11, 13948. [Google Scholar] [CrossRef]
- Budinova, T.; Gergova, K.; Petrov, N.; Minkova, V. A study of the process of pyrolysis in a water-vapor stream of activated carbons, prepared from agricultural by-products by some physicochemical methods. Thermochim. Acta 1994, 244, 267–276. [Google Scholar] [CrossRef]
- Gergova, K.; Galushko, A.; Petrov, N.; Minkova, V. Investigation of the porous structure of activated carbons prepared by pyrolysis of agricultural by-products in a stream of water-vapor. Carbon 1992, 30, 721–727. [Google Scholar] [CrossRef]
- Tadda, M.A.; Ahsan, A.; Shitu, A.; ElSergany, M.; Arunkumar, T.; Bipin, J.; Razzaque, M.A.; Nik Daud, N.N. A review on activated carbon: Process, application and prospects. J. Adv. Civ. Eng. Pract. Res. 2016, 2, 7–13. [Google Scholar]
- Hirunpraditkoon, S.; Tunthong, N.; Ruangchai, A.; Nuithitikul, K. Adsorption Capacities of Activated Carbons Prepared from Bamboo by KOH Activation. World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Eng. 2011, 5, 491–495. [Google Scholar]
- Malesic-Eleftheriadou, N.; Liakos, E.V.; Evgenidou, E.; Kyzas, G.Z.; Bikiaris, D.N.; Lambropoulou, D.A. Low-cost agricultural wastes (orange peels) for the synthesis and characterization of activated carbon biosorbents in the removal of pharmaceuticals in multi-component mixtures from aqueous matrices. J. Mol. Liq. 2022, 368, 120795. [Google Scholar] [CrossRef]
- Herrera-Barros, A.; Bitar-Castro, N.; Villabona-Ortíz, Á.; Tejada-Tovar, C.; González-Delgado, Á.D. Nickel adsorption from aqueous solution using lemon peel biomass chemically modified with TiO2 nanoparticles. Sustain. Chem. Pharm. 2020, 17, 100299. [Google Scholar] [CrossRef]
- Ying, D.; Hong, P.; Jiali, F.; Qinqin, T.; Yuhui, L.; Youqun, W.; Zhibin, Z.; Xiaohong, C.; Yunhai, L. Removal of uranium using MnO2/orange peel biochar composite prepared by activation and in-situ deposit in a single step. Biomass Bioenergy 2020, 142, 105772. [Google Scholar] [CrossRef]
- Forouzandeh, P.; Kumaravel, V.; Suresh, P. Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts 2020, 10, 969. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef]
- Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogenstorage. Energy Environ. Sci. 2014, 7, 1250–1280. [Google Scholar] [CrossRef]
- Namasivayam, C.; Kavitha, D. Removal of Congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, an Agricultural Solid Waste. Dye. Pigment. 2002, 54, 47–58. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B.H. Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. Chem. Eng. J. 2011, 175, 233–243. [Google Scholar] [CrossRef]
- Davila, P.A.; Torres-Rivera, O.L.; Ramos, R.L.; Perez, R.O. Removal of Pyridine from Aqueous Solution by Adsorption on an Activated Carbon Cloth. Clean-Soil, Air, Water 2012, 40, 45–53. [Google Scholar] [CrossRef]
- Snajdarek, L.; Chylek, R.; Pospfsil, J. Slow thermal decomposition of lignocelluloses compared to numerical model: Fine particle emission, gaseous products analysis. Energy 2022, 261, 125268. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Demirbas, A.; Arin, G. An overview of Biomass pyrolysis. Energ. Source 2002, 24, 471–482. [Google Scholar] [CrossRef]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrol. 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Williams, P.T.; Besler, S. The influence of temperature and heating rate on the pyrolysis of biomass. Renew. Energ. 1996, 7, 233–250. [Google Scholar] [CrossRef]
- Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon, 1st ed.; Elsevier Science & Technology Books: Amsterdam, The Netherlands, 2006; 554p. [Google Scholar]
- Grima-Olmedo, C.; Ramírez-Gómez, Á.; Gómez-Limón, D.; Clemente-Jul, C. Activated carbon from flash pyrolysis of eucalyptus residue. Heliyon 2016, 2, 9. [Google Scholar] [CrossRef]
- Ioannidou, A.Z. Agricultural residues as precursors for activated carbon production-A review. Renew Sust. Energ. Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Rosas, J.; Bedia, J.; Rodríguez-Mirasol, J.; Cordero, T. On the preparation and characterization of chars and activated carbons from orange skin. Fuel Process. Technol. 2010, 91, 1345–1354. [Google Scholar] [CrossRef]
- Marquez-Montesinos, F.; Cordero, T.; Rodríguez-Mirasol, J.; Rodríguez, J.J. CO2 and steam gasification of a grapefruit skin char. Fuel 2002, 81, 423–429. [Google Scholar] [CrossRef]
- Hashemian, S.; Salari, K.; Yazdi, Z.A. Preparation of activated carbon from agricultural wastes (almond shell and orange peel) for adsorption of 2-pic from aqueous solution. J. Ind. Eng. Chem. 2014, 20, 1892–1900. [Google Scholar] [CrossRef]
- Horikawa, T.; Kitakaze, Y.; Sekida, T.; Hayashi, J.; Katoh, M. Characteristics and humidity control capacity of activated carbon from bamboo. Bioresour. Technol. 2010, 101, 3964–3969. [Google Scholar] [CrossRef]
- Lo, S.-F.; Wang, S.-Y.; Tsai, M.-J.; Lin, L.-D. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem. Eng. Res. Des. 2012, 90, 1397–1406. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Tsai, M.-H.; Lo, S.-F. Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal. Bioresour. Technol. 2008, 99, 7027–7033. [Google Scholar] [CrossRef]
- Fernandez, M.E.; Nunell, G.V.; Bonelli, P.R.; Cukierman, A.L. Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes. Ind. Crops Prod. 2014, 62, 437–445. [Google Scholar] [CrossRef]
- Moreno-Piraján, J.C.; Giraldo, L. Heavy metal ions adsorption from wastewater using activated carbon from orange peel. E-J. Chem. 2012, 9, 926–937. [Google Scholar] [CrossRef]
- Giraldo, L.; Moreno-Pirajan, J.C. Activated Carbon Prepared From Orange Peels Coated With Titanium Oxide Nanoparticles: Characterization and Applications in the Decomposition of NOx. Orient. J. Chem. 2014, 30, 451–461. [Google Scholar] [CrossRef]
- Liu, Q.-S.; Zheng, T.; Wang, P.; Guo, L. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind. Crops Prod. 2010, 31, 233–238. [Google Scholar] [CrossRef]
- Ip, A.; Barford, J.; McKay, G. Production and comparison of high surface area bamboo derived active carbons. Bioresour. Technol. 2008, 99, 8909–8916. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Gao, Z.; Wang, X.; Wu, D.; Xu, F.; Wang, X.; Guo, Y.; Jiang, K. Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochimica Acta 2015, 157, 290–298. [Google Scholar] [CrossRef]
- Zhu, X.-L.; Wang, P.-Y.; Peng, C.; Yang, J.; Yan, X.-B. Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chin. Chem. Lett. 2014, 25, 929–932. [Google Scholar] [CrossRef]
- Yorgun, S.; Vural, N.; Demiral, H. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous Mesoporous Mater. 2009, 122, 189–194. [Google Scholar] [CrossRef]
- Velásquez-Cock, J.; Castro, C.; Gañán, P.; Osorio, M.; Putaux, J.-L.; Serpa, A.; Zuluaga, R. Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. Valery. Ind. Crop. Prod. 2016, 83, 551–560. [Google Scholar] [CrossRef]
- Valledor, L.; Guerrero, S.; García-Campa, L.; Meijón, M. Proteometabolomic characterization of apical bud maturation in Pinus pinaster. Tree Physiol. 2021, 41, 508–521. [Google Scholar] [CrossRef]
- González, J.F.; Román, S.; González-García, C.M.; Valente Nabais, J.M.; Ortiz, A.L. Porosity Development in Activated Carbons Prepared from Walnut Shells by Carbon Dioxide or Steam Activation. Ind. Eng. Chem. Res. 2009, 48, 7474–7481. [Google Scholar] [CrossRef]
- Wigmans, T. Industrial aspects of production and use of activated carbons. Carbon 1989, 27, 13–22. [Google Scholar] [CrossRef]
- Román, S.; González, J.F.; González-García, C.M.; Zamora, F. Control of pore development during CO2 and steam activation of olive stones. Fuel Process. Technol. 2008, 89, 715–720. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Zhang, W.; Zhan, H.; Yang, C.H.Z.; Peng, H.; Leng, L. Machine-learning-aided thermochemical treatment of biomass: A review. Biofuel Res. J. 2023, 37, 1786–1809. [Google Scholar] [CrossRef]
- Panahi, H.K.S.; Dehhaghi, M.; Ok, Y.S.; Nizami, A.-S.; Khoshnevisan, B.; Mussatto, S.I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. J. Clean. Prod. 2020, 270, 122462. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Khounani, Z.; Hosseinzadeh-Bandbafha, H.; Gupta, V.K.; Amiri, H.; Lam, S.S.; Morosuk, T.; Tabatabaei, M. Exergoenvironmental analysis of bioenergy systems: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111399. [Google Scholar] [CrossRef]
- Abdelaziz, G.B.; El-Said, E.M.; Bedair, A.G.; Sharshir, S.W.; Kabeel, A.; Elsaid, A.M. Experimental study of activated carbon as a porous absorber in solar desalination with environmental, exergy, and economic analysis. Process. Saf. Environ. Prot. 2021, 147, 1052–1065. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Hosseinzadeh-Bandbafha, H.; Shahbeik, H.; Tabatabaei, M. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 2022, 9, 1697–1706. [Google Scholar] [CrossRef]
R→AC | C (%) | H (%) | N (%) | S (%) | O (%) by Difference |
---|---|---|---|---|---|
B→BV | 46.60→78.24 | 6.14→0.92 | 0.20→0.62 | 0.08→0.23 | 46.98→19.99 |
O→OV | 41.62→66.43 | 5.78→1.16 | 0.74→1.68 | 0→0 | 51.86→30.73 |
P→PV | 48.25→86.18 | 6.35→1.19 | 0.21→0.72 | 0.07→0.09 | 45.12→11.82 |
Residue (Precursor) | Bamboo (Stem) | Orange (Epicarp) | Paulownia (Bark) | ||||
---|---|---|---|---|---|---|---|
Activated carbon (AC) | Unit. | BC | BV | OC | OV | PC | PV |
BET surface area | m2/g | 911 | 1182 | 248 | 388 | 800 | 1166 |
Micropore area | m2/g | 855 | 1043 | 175 | 351 | 734 | 967 |
% | 93.85 | 88.19 | 70.39 | 90.41 | 91.75 | 82.94 | |
Total vol. BJH | cm3/g | 0.477 | 0.520 | 0.160 | 0.215 | 0.423 | 0.545 |
Micropore volume | cm3/g | 0.407 | 0.349 | 0.081 | 0.163 | 0.345 | 0.318 |
% | 85.26 | 67.07 | 50.79 | 75.73 | 81.63 | 58.46 | |
Average pore diameter | nm | 3.22 | 4.32 | 3.79 | 3.36 | 2.77 | 3.96 |
Physical Activation | ||||||
---|---|---|---|---|---|---|
R | Gas | Flow (mL/min) | Temperature (°C) | Time (h) | BET (m2/g) | Ref. |
O | N2 (Py) | 150 cm3/min | 700 | 2 | 20 | [45] |
CO2 (Ac) | 150 cm3/min | 700 | 2 | 511 | ||
N2 (Py) | 150 mL/min | 700 | 2 | - | [46] | |
CO2 (Ac) | 60 mL/min | 725–800 | - | 405–680 | ||
N2 (Py) | - | 500–1200 | 1 | - | [47] | |
CO2 (Ac) | - | 500–1200 | 1 | 225.6–248 | ||
B | N2 (Py) | 300 cm3/min | 900 | 1 | - | [48] |
CO2 (Ac) | - | 900 | 0.5–1 | 391 | ||
N2 (Py) | 500 mL/min | 800 | - | - | [49] | |
Steam (Ac) | 400 mL/h | 800 | 1 | 464.7–589.6 | ||
N2 (Py) | 500 mL/min | 800–900 | 1–2 | - | [50] | |
Steam (Ac) | 400 mL/h | 800–900 | 2 | 474–794 | ||
CO2 (Ac) | 400 mL/min | 800–900 | 2 | 570–594 | ||
Chemical activation | ||||||
R | Gas | Flow (mL/min) | Temperature (°C) | Time (h) | BET (m2/g) | Ref. |
O | H3PO4 | 2:1 | 475 | 0.5 | 1090 | [51] |
Ar2 + KOH | 30 cm3/min +2:5–8:5 | 550 | 4 | 676–897 | [52] | |
Ar2 + KOH | 30 cm3/min +8:5 | 550 | 4 | 625 | [53] | |
B | H3PO4 | 1:1 | 600 | 0.5–1 | 1215–1416 | [54] |
H3PO4 | 1:1–6:1 | 600–900 | 4 | 697–2123 | [55] | |
K2CO4 | 1:2–2:1 | 500–900 | 1 | 631–2175 | [48] | |
P | N2(P) | - | 600 | 2 | - | [56] |
KOH + HCl | 2:1–4:1 | 800 | 1 | 1006–1471 | ||
KOH + HCl | 2:1–6:1 | 600–900 | 0.5–2 | 782–2435 | [57] | |
ZnCl2 + HCl | 1:2–4:1 | 400–700 | 1 | 1264–2620 | [58] |
Paulownia Maturity | Years | 1 | 3 | 5 | 8 |
---|---|---|---|---|---|
Activated carbon (AC) | Unit. | P1 | P3 | P5 | P8 |
BET surface area | m2/g | 1063 | 1166 | 1143 | 485 |
Micropore area 1 | m2/g | 943 | 967 | 958 | 430 |
External surface area 1 | m2/g | 121 | 199 | 185 | 55 |
Micropore volume 1 | cm3/g | 0.318 | 0.318 | 0.315 | 0.165 |
Average pore diameter 2 | Å | ||||
Adsorption | 38.85 | 39.57 | 43.74 | 3.13 | |
Desorption | 49.61 | 49.96 | 56.73 | 4.23 | |
Average pore hydraulic radius 3 | Å | 3.43 | 4.07 | 4.04 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grima-Olmedo, C.; Valle-Falcones, L.M.; Galindo, D.G.-L.; Esparver, R.R.-P. Production of AC from Bamboo, Orange, and Paulownia Waste—Influence of Activation Gas and Biomass Maturation. Materials 2023, 16, 3498. https://doi.org/10.3390/ma16093498
Grima-Olmedo C, Valle-Falcones LM, Galindo DG-L, Esparver RR-P. Production of AC from Bamboo, Orange, and Paulownia Waste—Influence of Activation Gas and Biomass Maturation. Materials. 2023; 16(9):3498. https://doi.org/10.3390/ma16093498
Chicago/Turabian StyleGrima-Olmedo, Carlos, Laura M. Valle-Falcones, Dulce Gómez-Limón Galindo, and Ramón Rodríguez-Pons Esparver. 2023. "Production of AC from Bamboo, Orange, and Paulownia Waste—Influence of Activation Gas and Biomass Maturation" Materials 16, no. 9: 3498. https://doi.org/10.3390/ma16093498
APA StyleGrima-Olmedo, C., Valle-Falcones, L. M., Galindo, D. G. -L., & Esparver, R. R. -P. (2023). Production of AC from Bamboo, Orange, and Paulownia Waste—Influence of Activation Gas and Biomass Maturation. Materials, 16(9), 3498. https://doi.org/10.3390/ma16093498