Two-Level Scheme for Identification of the Relaxation Time Spectrum Using Stress Relaxation Test Data with the Optimal Choice of the Time-Scale Factor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Relaxation Time Spectrum
2.2. Models
2.2.1. Positive Definiteness of the Basis Functions
2.2.2. Asymptotic Properties of the Basis Functions
2.2.3. Upper Bounds for the Basis Functions
2.2.4. Monotonicity of the Basis Functions
2.2.5. Ranges of Applicability
2.3. Least-Squares Regularized Identification
3. Results and Discussion
3.1. Necessary Optimality Condition
3.2. Choice of the Time-Scale Factor
3.3. Two-Level Identification Scheme
3.3.1. Lower Level
3.3.2. Upper Level
- A numerical procedure for solving the lower-level GCV minimization task (28);
- An iterative scheme for solving the upper-level problem (37) of choosing the best time-scale factor.
3.4. Algebraic Background of the Identification Scheme
3.5. Computational Algorithm for Model Identification
- Step 1: Determine the optimal regularization parameter in the following two-level computations.
- Step 1.0: Choose the initial point for the numerical procedure applied to solve the upper-level task (37).
- Step 1.1: Let be the -th iterate in the numerical procedure chosen to solve the upper-level task (37). For , solve the lower-level minimization task (28) according to the chosen numerical optimization procedure and determine the regularization parameter . The algebraic formula (50) is applied.
- Step 1.2: Using , compute, according to the numerical procedure selected to solve the upper-level task (37), with the index described by (51), the new parameter , which is the next approximation of . If for the stopping rule of the chosen numerical procedure is satisfied, i.e.,
- Step 2: Compute the vector of the optimal model parameters according to (45) and the best model of the relaxation spectrum given by (46).
3.6. Analysis
3.6.1. Smoothness
3.6.2. Convergence and Noise Robustness
3.7. Example
3.7.1. Optimal Models
3.7.2. Optimal and Sub-Optimal Time-Scale Factors
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Proof of Theorem 1
Appendix A.2. Algebraic Matrix Properties
Appendix A.2.1. Matrix Identities and Inequalities
Appendix A.2.2. New Matrix Property
Appendix A.3. Proof of Theorem 2
Appendix A.4. Derivation of the Formula (33)
Appendix A.5. Proof of Theorem 3
Appendix A.6. Proof of Theorem 4
Appendix A.7. Proof of Proposition 1
Appendix A.8. Proof of Proposition 4
Appendix A.9. Derivation of the Formula (62)
Appendix B
Time-Scale Factor α [s] | Range 1 of Relaxation Times τapp(α) [s] | Range 1 of Times tapp(α) [s] | Range 1 of Relaxation Times τapp(α) [s] | Range 1 of Times tapp(α) [s] |
---|---|---|---|---|
0.0001 | 161,655.35 | 337,647.7 | 178,346.044 | 392,372 |
0.001 | 16,165.53 | 33,764.77 | 17,834.606 | 39,238.5 |
0.01 | 1616.55 | 3376.48 | 1783.462 | 3923.85 |
0.1 | 161.65 | 337.65 | 178.348 | 392.5 |
1 | 16.165 | 33.765 | 17.836 | 39.26 |
10 | 1.616 | 3.376 | 1.784 | 3.95 |
100 | 0.1616 | 0.337 | 0.1783 | 0.392 |
0.0001 | 194,529.30 | 446,719.4 | 210,306.21 | 500,804.6 |
0.001 | 19,452.93 | 44,671.94 | 21,030.621 | 50,080.46 |
0.01 | 1945.29 | 4467.19 | 2103.062 | 5008.046 |
0.1 | 194.53 | 446.72 | 210.306 | 500.81 |
1 | 19.453 | 44.672 | 21.0306 | 50.08 |
10 | 1.945 | 4.467 | 2.1031 | 5.008 |
100 | 0.1945 | 0.447 | 0.2103 | 0.501 |
0.0001 | 225,748.07 | 554,697 | 240,907.43 | 608,443.6 |
0.001 | 22,574.807 | 55,469.7 | 24,090.743 | 60,844.38 |
0.01 | 2257.481 | 5546.97 | 2409.074 | 6084.45 |
0.1 | 225.748 | 554.69 | 240.907 | 608.46 |
1 | 22.5748 | 55.469 | 24.0907 | 60.86 |
10 | 2.2575 | 5.547 | 2.4091 | 6.1 |
100 | 0.2257 | 0.555 | 0.2409 | 0.608 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|
1 | 3.680199 | 4.353830 | 4.974923 | 5.556319 | 6.106199 | 6.630173 | 7.132299 | 7.615642 | 8.082583 |
2 | 3.671711 | 4.330308 | 4.931579 | 5.489724 | 6.013827 | 6.510086 | 6.982965 | 7.435811 | 7.871217 |
3 | 3.667383 | 4.325690 | 4.927344 | 5.485966 | 6.010365 | 6.506625 | 6.979169 | 7.431342 | 7.865747 |
4 | 3.666555 | 4.325232 | 4.927078 | 5.485799 | 6.010251 | 6.506536 | 6.979081 | 7.431227 | 7.865575 |
5 | 3.666421 | 4.325190 | 4.927062 | 5.485792 | 6.010247 | 6.506534 | 6.979079 | 7.431224 | 7.865568 |
6 | 3.666400 | 4.325186 | 4.927061 | 5.485792 | 6.010247 | 6.506534 | 6.979079 | 7.431223 | 7.865567 |
7 | 3.666397 | 4.325186 | 4.927061 | 5.485792 | 6.010247 | 6.506534 | 6.979079 | 7.431223 | 7.865567 |
8 | 3.666396 | 4.325186 | 4.927061 | 5.485792 | 6.010247 | 6.506534 | 6.979079 | 7.431223 | 7.865567 |
9 | 3.666396 | 4.325186 | 4.927061 | 5.485792 | 6.010247 | 6.506534 | 6.979079 | 7.431223 | 7.865567 |
10 | 3.666396 | 4.325186 | 4.927061 | 5.485792 | 6.010247 | 6.506534 | 6.979079 | 7.431223 | 7.865567 |
3.666396 | 4.325185 | 4.927061 | 5.485792 | 6.010247 | 6.506534 | 6.979079 | 7.431223 | 7.865567 |
0.50819 | −0.32787 | −0.31484 | −0.28238 | −0.26421 | −0.26104 | −0.26344 | −0.25958 | −0.25722 | −0.24893 |
0.48916 | 3.25406 | 2.44705 | 1.86341 | 1.57535 | 1.44701 | 1.38846 | 1.26949 | 1.18396 | 1.042852 |
−0.01177 | −5.37283 | −1.74791 | −0.21483 | 0.21735 | 0.33298 | 0.38151 | 0.53024 | 0.62627 | 0.77959 |
3.79955 | −1.90531 | −1.81625 | −1.22415 | −0.94252 | −0.85336 | −0.72742 | −0.63340 | −0.49513 | |
3.00974 | −0.42686 | −0.80274 | −0.65867 | −0.57137 | −0.58067 | −0.58715 | −0.58709 | ||
2.49772 | 0.35990 | 0.00038 | 0.018141 | −0.06714 | −0.11806 | −0.19722 | |||
1.85736 | 0.61157 | 0.39343 | 0.27044 | 0.22125 | 0.12879 | ||||
1.25669 | 0.58048 | 0.40004 | 0.34372 | 0.26284 | |||||
0.75498 | 0.46114 | 0.34725 | 0.26954 | ||||||
0.59592 | 0.35547 | 0.25643 | |||||||
0.46177 | 0.31367 | ||||||||
0.49927 |
References
- Malkin, A.I.A.; Malkin, A.Y.; Isayev, A.I. Rheology: Concepts, Methods and Applications; ChemTec: Deerfield Beach, FL, USA, 2006; Available online: https://books.google.pl/books?id=8rGafjhgz-UC (accessed on 3 December 2022).
- Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Rao, M.A. Rheology of Fluid, Semisolid, and Solid Foods: Principles and Applications; Springer: New York, NY, USA, 2013; Available online: https://books.google.pl/books?id=9-23BAAAQBAJ (accessed on 9 March 2023).
- Ankiewicz, S.; Orbey, N.; Watanabe, H.; Lentzakis, H.; Dealy, J. On the use of continuous relaxation spectra to characterize model polymers. J. Rheol. 2016, 60, 1115–1120. [Google Scholar] [CrossRef]
- Anderssen, R.S.; Davies, A.R.; de Hoog, F.R.; Loy, R.J. Derivative based algorithms for continuous relaxation spectrum recovery. J. Non-Newton. Fluid Mech. 2015, 222, 132–140. [Google Scholar] [CrossRef]
- Mead, D.W. Numerical interconversion of linear viscoelastic material functions. J. Rheol. 1994, 38, 1769–1795. [Google Scholar] [CrossRef]
- Hajikarimi, P.; Moghadas Nejad, F. Chapter 6-Interconversion of constitutive viscoelastic functions. In Applications of Viscoelasticity; Hajikarimi, P., Nejad, F.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 107–139. [Google Scholar] [CrossRef]
- Chang, F.-L.; Bin, H.; Huang, W.-T.; Chen, L.; Yin, X.-C.; Cao, X.-W.; He, G.-J. Improvement of rheology and mechanical properties of PLA/PBS blends by in-situ UV-induced reactive extrusion. Polymer 2022, 259, 125336. [Google Scholar] [CrossRef]
- Pogreb, R.; Loew, R.; Bormashenko, E.; Whyman, G.; Multanen, V.; Shulzinger, E.; Abramovich, A.; Rozban, A.; Shulzinger, A.; Zussman, E.; et al. Relaxation spectra of polymers and phenomena of electrical and hydrophobic recovery: Interplay between bulk and surface properties of polymers. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 198–205. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, B.; Chen, J. A unified procedure for rapidly determining asphalt concrete discrete relaxation and retardation spectra. Constr. Build. Mater. 2015, 93, 35–48. [Google Scholar] [CrossRef]
- Luo, L.; Xi, R.; Ma, Q.; Tu, C.; Ibrahim Shah, Y. An improved method to establish continuous relaxation spectrum of asphalt materials. Constr. Build. Mater. 2022, 354, 129182. [Google Scholar] [CrossRef]
- Martinez, J.M.; Boukamel, A.; Méo, S.; Lejeunes, S. Statistical approach for a hyper-visco-plastic model for filled rubber: Experimental characterization and numerical modeling. Eur. J. Mech.-A/Solids 2011, 30, 1028–1039. [Google Scholar] [CrossRef]
- Bardet, S.; Gril, J. Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements. C. R. Mécanique 2002, 330, 549–556. [Google Scholar] [CrossRef]
- Zhang, N.Z.; Bian, X.L.; Ren, C.; Geng, C.; Mu, Y.K.; Ma, X.D.; Jia, Y.D.; Wang, Q.; Wang, G. Manipulation of relaxation processes in a metallic glass through cryogenic treatment. J. Alloys Compd. 2022, 894, 162407. [Google Scholar] [CrossRef]
- Yazar, G.; Demirkesen, I. Linear and Non-Linear Rheological Properties of Gluten-Free Dough Systems Probed by Fundamental Methods. Food Eng. Rev. 2023, 15, 56–85. [Google Scholar] [CrossRef]
- Demidov, A.V.; Makarov, A.G. Spectral Simulation of Performance Processes of Polymeric Textile Materals. Fibre Chem. 2023, 54, 222–226. [Google Scholar] [CrossRef]
- Lau, H.C.P.; Holtzman, B.K.; Havlin, C. Toward a Self-Consistent Characterization of Lithospheric Plates Using Full-Spectrum Viscoelasticity. AGU Adv. 2020, 1, e2020AV000205. [Google Scholar] [CrossRef]
- Stankiewicz, A.; Golacki, K. Approximation of the continuous relaxation spectrum of plant viscoelastic materials using Laguerre functions. Electron. J. Pol. Agric. Univ. Ser. Agric. Eng. 2008, 11. Available online: http://www.ejpau.media.pl/articles/volume11/issue1/art-20.pdf (accessed on 7 March 2023).
- Baumgaertel, M.; Winter, H.H. Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol. Acta 1989, 28, 511–519. [Google Scholar] [CrossRef]
- Honerkamp, J.; Weese, J. Determination of the relaxation spectrum by a regularization method. Macromolecules 1989, 22, 4372–4377. [Google Scholar] [CrossRef]
- Malkin, A.Y. The use of a continuous relaxation spectrum for describing the viscoelastic properties of polymers. Polym. Sci. Ser. A 2006, 48, 39–45. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Vasilyev, G.B.; Andrianov, A.V. On continuous relaxation spectrum. Method of calculation. Polym. Sci. Ser. A 2010, 52, 1137–1141. [Google Scholar] [CrossRef]
- Stadler, F.J.; Bailly, C. A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol. Acta 2009, 48, 33–49. [Google Scholar] [CrossRef]
- Davies, A.R.; Goulding, N.J. Wavelet regularization and the continuous relaxation spectrum. J. Non-Newton. Fluid Mech. 2012, 189–190, 19–30. [Google Scholar] [CrossRef]
- Davies, A.R.; Anderssen, R.S.; de Hoog, F.R.; Goulding, N.J. Derivative spectroscopy and the continuous relaxation spectrum. J. Non-Newton. Fluid Mech. 2016, 233, 107–118. [Google Scholar] [CrossRef]
- Cho, K.S. Power series approximations of dynamic moduli and relaxation spectrum. J. Rheol. 2013, 57, 679–697. [Google Scholar] [CrossRef]
- Takeh, A.; Shanbhag, S. A Computer Program to Extract the Continuous and Discrete Relaxation Spectra from Dynamic Viscoelastic Measurements. Appl. Rheol. 2013, 23, 24628. [Google Scholar] [CrossRef]
- Pérez-Calixto, D.; Amat-Shapiro, S.; Zamarrón-Hernández, D.; Vázquez-Victorio, G.; Puech, P.-H.; Hautefeuille, M. Determination by Relaxation Tests of the Mechanical Properties of Soft Polyacrylamide Gels Made for Mechanobiology Studies. Polymers 2021, 13, 629. [Google Scholar] [CrossRef] [PubMed]
- Joyner, H.S. Rheology of Semisolid Foods; Springer: Berlin/Heidelberg, Germany, 2019; Available online: https://books.google.pl/books?id=siy-DwAAQBAJ (accessed on 9 March 2023).
- Alfrey, T.; Doty, P. The Methods of Specifying the Properties of Viscoelastic Materials. J. Appl. Phys. 1945, 16, 700–713. [Google Scholar] [CrossRef]
- Widder, D.V. An Introduction to Transformation Theory; Academic Press: Cambridge, MA, USA, 1971; Available online: https://books.google.pl/books?id=wERoPQAACAAJ (accessed on 9 March 2023).
- Alfrey, T. Mechanical Behavior of High Polymers; Interscience Publishers: Geneva, Switzerland, 1965. [Google Scholar]
- ter Haar, D. An easy approximate method of determining the relaxation spectrum of a viscoelastic materials. J. Polym. Sci. 1951, 6, 247–250. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Yunping, X. Continuous Retardation Spectrum for Solidification Theory of Concrete Creep. J. Eng. Mech. 1995, 121, 281–288. [Google Scholar] [CrossRef]
- Goangseup, Z.; Bažant, Z.P. Continuous Relaxation Spectrum for Concrete Creep and its Incorporation into Microplane Model M4. J. Eng. Mech. 2002, 128, 1331–1336. [Google Scholar] [CrossRef]
- Macey, H.H. On the Application of Laplace Pairs to the Analysis of Relaxation Curves. J. Sci. Instrum. 1948, 25, 251. [Google Scholar] [CrossRef]
- Sips, R. Mechanical behavior of viscoelastic substances. J. Polym. Sci. 1950, 5, 69–89. [Google Scholar] [CrossRef]
- Yamamoto, R. Stress relaxation property of the cell wall and auxin-induced cell elongation. J. Plant Res. 1996, 109, 75–84. [Google Scholar] [CrossRef]
- Stankiewicz, A. A scheme for identification of continuous relaxation time spectrum of biological viscoelastic materials. Acta Sci. Pol. Ser. Tech. Agrar. 2003, 2, 77–91. [Google Scholar]
- Stankiewicz, A. A Class of Algorithms for Recovery of Continuous Relaxation Spectrum from Stress Relaxation Test Data Using Orthonormal Functions. Polymers 2023, 15, 958. [Google Scholar] [CrossRef]
- Zhang, B.; Makram-Ebeid, S.; Prevost, R.; Pizaine, G. Fast solver for some computational imaging problems: A regularized weighted least-squares approach. Digit. Signal Process. 2014, 27, 107–118. [Google Scholar] [CrossRef]
- Hansen, P.C. Rank-Deficient and Discrete Ill-Posed Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1998. [Google Scholar] [CrossRef]
- Szabatin, J. Podstawy Teorii Sygnałów; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 1982. (In Polish) [Google Scholar]
- Knuth, D.E. Two Notes on Notation. Am. Math. Mon. 1992, 99, 403–422. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M. On approximating the modified Bessel function of the second kind. J. Inequal. Appl. 2017, 2017, 41. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 3rd ed.; Cambridge University Press: Cambridge, UK, 1995; Available online: https://books.google.nl/books?id=Mlk3FrNoEVoC (accessed on 19 December 2022).
- Martin, P.; Maass, F. Accurate analytic approximation to the Modified Bessel function of Second Kind K0(x). Results Phys. 2022, 35, 105283. [Google Scholar] [CrossRef]
- Rehman, N.U.; Hussain, S.T.; Aziz, A. Pulsatile Darcy flow of water-based thermally radiative carbon nanotubes between two concentric cylinders. Numer. Methods Partial. Differ. Equ. 2023, 39, 213–230. [Google Scholar] [CrossRef]
- Okita, T.; Harada, H. 3-D Analytical Model of Axial-Flux Permanent Magnet Machine with Segmented Multipole-Halbach Array. IEEE Access 2023, 11, 2078–2091. [Google Scholar] [CrossRef]
- Lovrić, D.; Vujević, S. Accurate Computation of Internal Impedance of Two-Layer Cylindrical Conductors for Arguments of Arbitrary Magnitude. IEEE Trans. Electromagn. Compat. 2018, 60, 347–353. [Google Scholar] [CrossRef]
- Das, R.; Manna, B.; Banerjee, A. Spectral element formulation for rock-socketed mono-pile under horizontal dynamic loads. Soil Dyn. Earthq. Eng. 2023, 169, 107863. [Google Scholar] [CrossRef]
- Liu, M.; Huang, H. Poroelastic response of spherical indentation into a half space with an impermeable surface via step displacement. J. Mech. Phys. Solids 2021, 155, 104546. [Google Scholar] [CrossRef]
- Yamamura, K. Dispersal distance of heterogeneous populations. Popul. Ecol. 2002, 44, 93–101. [Google Scholar] [CrossRef]
- Gaunt, R.E. Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 2014, 420, 373–386. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Wahba, G. Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy. SIAM J. Numer. Anal. 1977, 14, 651–667. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix Computations; Johns Hopkins University Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Lee, C.-H. Upper and lower matrix bounds of the solution for the discrete Lyapunov equation. IEEE Trans. Autom. Control. 1996, 41, 1338–1341. [Google Scholar] [CrossRef]
- Rojo, O.; Soto, R.; Rojo, H. Bounds for the spectral radius and the largest singular value. Comput. Math. Appl. 1998, 36, 41–50. [Google Scholar] [CrossRef]
- Kwakye-Nimo, S.; Inn, Y.; Yu, Y.; Wood-Adams, P.M. Linear viscoelastic behavior of bimodal polyethylene. Rheol. Acta 2022, 61, 373–386. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Ruan, H. On the mechanical β relaxation in glass and its relation to the double-peak phenomenon in impulse excited vibration at high temperatures. J. Non-Cryst. Solids 2020, 533, 119939. [Google Scholar] [CrossRef]
- Deaño, A.; Temme, N.M. Analytical and numerical aspects of a generalization of the complementary error function. Appl. Math. Comput. 2010, 216, 3680–3693. [Google Scholar] [CrossRef]
- Takekawa, T. Fast parallel calculation of modified Bessel function of the second kind and its derivatives. SoftwareX 2022, 17, 100923. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Boston, MA, USA, 2007. [Google Scholar] [CrossRef]
Time-Scale Factor α [s] | ||||
---|---|---|---|---|
Range 1 of Relaxation Times τapp(α) [s] | Range 1 of Times tapp(α) [s] | Range 1 of Relaxation Times τapp(α) [s] | Range 1 of Times tapp(α) [s] | |
0.0001 | 144,305.22 | 282,360.6 | 255,824.35 | 662,077.1 |
0.001 | 14,430.52 | 28,236.06 | 25,582.435 | 66,207.71 |
0.01 | 1443.05 | 2823.61 | 2558.243 | 6620.77 |
0.1 | 144.305 | 282.36 | 255.824 | 662.08 |
1 | 14.43 | 28.236 | 25.5824 | 66.208 |
10 | 1.4431 | 2.824 | 2.5582 | 6.621 |
100 | 0.1443 | 0.282 | 0.2558 | 0.662 |
K | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|
3.666396 | 4.325185 | 4.927061 | 5.485792 | 6.010247 | 6.506534 | 6.979079 | 7.431223 | 7.865567 | |
0.206481 | 0.087523 | 0.034642 | 0.013243 | 0.004953 | 0.001824 | 6.6358 × 10−4 | 2.3925 × 10−4 | 8.5615 × 10−5 |
3 | 0.00520 | 0.00205 | 0.0080 | 0.0445 | 8.63505 × 10−4 | 0.7055 | 13.0248 | 90.459 | 12.876 |
4 | 0.01675 | 0.0164 | 0.01745 | 0.0063 | 3.43945 × 10−5 | 7.3485 | 16.1607 | 39.160 | 3.1049 |
5 | 0.02025 | 0.0192 | 0.0213 | 0.0071 | 2.71552 × 10−5 | 4.6724 | 17.1465 | 35.638 | 2.4592 |
6 | 0.02375 | 0.0220 | 0.0255 | 0.0078 | 2.48511 × 10−5 | 3.6493 | 18.0443 | 33.986 | 0.7563 |
7 | 0.02655 | 0.0234 | 0.0290 | 0.0083 | 2.48256 × 10−5 | 2.8846 | 18.5088 | 33.364 | 0.1432 |
8 | 0.02865 | 0.0234 | 0.0318 | 0.0089 | 2.51617 × 10−5 | 2.3555 | 18.5679 | 32.824 | 0.1692 |
9 | 0.03005 | 0.0241 | 0.03425 | 0.0099 | 2.52412 × 10−5 | 2.0639 | 18.3756 | 32.701 | 0.0111 |
10 | 0.03215 | 0.0255 | 0.0367 | 0.0109 | 2.51143 × 10−5 | 1.9058 | 18.4224 | 32.631 | 0.0336 |
11 | 0.03390 | 0.0276 | 0.03915 | 0.0122 | 2.48521 × 10−5 | 1.8020 | 18.3498 | 32.879 | 0.0327 |
12 | 0.03670 | 0.02935 | 0.04195 | 0.0127 | 2.44452 × 10−5 | 1.7198 | 18.4432 | 32.919 | 0.0328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankiewicz, A. Two-Level Scheme for Identification of the Relaxation Time Spectrum Using Stress Relaxation Test Data with the Optimal Choice of the Time-Scale Factor. Materials 2023, 16, 3565. https://doi.org/10.3390/ma16093565
Stankiewicz A. Two-Level Scheme for Identification of the Relaxation Time Spectrum Using Stress Relaxation Test Data with the Optimal Choice of the Time-Scale Factor. Materials. 2023; 16(9):3565. https://doi.org/10.3390/ma16093565
Chicago/Turabian StyleStankiewicz, Anna. 2023. "Two-Level Scheme for Identification of the Relaxation Time Spectrum Using Stress Relaxation Test Data with the Optimal Choice of the Time-Scale Factor" Materials 16, no. 9: 3565. https://doi.org/10.3390/ma16093565
APA StyleStankiewicz, A. (2023). Two-Level Scheme for Identification of the Relaxation Time Spectrum Using Stress Relaxation Test Data with the Optimal Choice of the Time-Scale Factor. Materials, 16(9), 3565. https://doi.org/10.3390/ma16093565