Highly Efficient NO2 Sensors Based on Al-ZnOHF under UV Assistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Al3+-doped ZnOHF
2.3. Characterizations
2.4. Gas-Sensing Properties Test
3. Results and Discussion
3.1. Characterization
3.2. Gas-Sensing Properties
3.3. Gas-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.; Li, T.; Zhang, J.; Guo, J.; Wang, W.; Zhang, D. High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sens. Actuators B Chem. 2022, 352, 130912. [Google Scholar] [CrossRef]
- Choi, M.S.; Kim, M.Y.; Mirzaei, A.; Kim, H.; Kim, S.; Baek, S.; Chun, D.W.; Jin, C.; Lee, K.H. Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets. Appl. Surf. Sci. 2021, 568, 150910. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, D.; Chen, H. MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sens. Actuators B Chem. 2019, 300, 127037. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Long, X.; Cao, J.; Xin, X.; Guan, X.; Peng, J.; Zheng, X. Gas sensors based on mechanically exfoliated MoS2 nanosheets for room-temperature NO2 detection. Sensors 2019, 19, 2123. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Wu, N.; Wang, Z.; Liu, J.; Xu, D.; Liu, W. High response and selectivity of platinum modified tin oxide porous spheres for nitrogen dioxide gas sensing at low temperature. Sens. Actuators B Chem. 2018, 257, 427–435. [Google Scholar] [CrossRef]
- Nam, B.; Ko, T.; Hyun, S.; Lee, C. NO2 sensing properties of WO3-decorated In2O3 nanorods and In2O3-decorated WO3 nanorods. Nano Converg. 2019, 6, 40. [Google Scholar] [CrossRef]
- Mokrushin, A.; Averin, A.; Gorobtsov, P.; Simonenko, N.; Simonenko, E.; Kuznetsov, N. Obtaining of ZnO/Fe2O3 thin nanostructured films by AACVD for detection of ppb-concentrations of NO2 as a biomarker of lung infections. Biosensors 2023, 13, 445. [Google Scholar] [CrossRef]
- Wang, M.; Jin, Z.; Liu, M.; Jiang, G.; Lu, H.; Zhang, Q.; Ju, J.; Tang, Y. Nanoplate-assembled hierarchical cake-like ZnO microstructures: Solvothermal synthesis, characterization and photocatalytic properties. RSC Adv. 2017, 7, 32528–32535. [Google Scholar] [CrossRef]
- Wang, M.; Sun, T.; Tang, Y.; Jiang, G.; Shi, Y. Template-free synthesis and photocatalytic properties of flower-like ZnOHF nanostructures. Mater. Lett. 2015, 160, 150–153. [Google Scholar] [CrossRef]
- Mirzaei, A.; Haghighat, F.; Chen, Z.; Yerushalmi, L. Sonocatalytic removal of ampicillin by Zn(OH)F: Effect of operating parameters, toxicological evaluation and by-products identification. J. Hazard. Mater. 2019, 375, 86–95. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, L.; Hou, Q.; Liang, W.; Liu, H.; Li, W. ZnOHF nanostructure-based quantum dots-sensitized solar cells. J. Mater. Chem. 2012, 22, 23344. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Y.; Zhang, J.; Ma, Y.; Cui, H.; Cui, Q.; Ma, Y. Compression behavior of copper hydroxyfluoride CuOHF as a case study of the high-pressure responses of the hydrogen-bonded two-dimensional layered materials. J. Phys. Chem. C 2019, 123, 25492–25500. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, B.; Li, L.; Yang, S. Phosphorus and yttrium co-doped Co(OH)F nanoarray as highly efficient and bifunctional electrocatalysts for overall water splitting. Small 2019, 15, 1904105. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Zhao, J.; Jin, Z.; Jiang, Z.; Xu, D.; Wang, F.; Zhang, X.; Song, H.; Pan, D.; Chen, Y.; et al. Flower-like hydroxyfluoride-sensing platform toward NO2 detection. ACS Appl. Mater. Interfaces 2021, 13, 26278–26287. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Marappan, G.; Chidambaram, D.; Rajendran, K.; Surya, V.J.; Venugopal, G.; Sivalingam, Y. Photo-enhanced acetone adsorption on delta-MnO2 nanoparticles: A step towards non-invasive detection of diabetes mellitus. Mater. Lett. 2022, 306, 130944. [Google Scholar] [CrossRef]
- Chang, J.; Deng, Z.; Li, M.; Wang, S.; Mi, L.; Sun, Q.; Horprathum, M.; He, Y.; Kong, F.; Fang, X.; et al. Visible light boosting hydrophobic ZnO/(Sr0.6Bi0.305)2Bi2O7 chemiresistor toward ambient trimethylamine. Sens. Actuators B Chem. 2022, 352, 131076. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Y.; Luo, Q.; Ge, C.; Liu, G.; Qiao, G.; Kim, E.J. Below-room-temperature solution-grown ZnO porous nanosheet arrays with ppb-level NO2 sensitivity under intermittent UV irradiation. Appl. Surf. Sci. 2021, 566, 150750. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, S.; Wang, X.; Huang, J.; Pan, W.; Zhang, J.; Meteku, B.E.; Zeng, J. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001) TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 2022, 423, 127160. [Google Scholar] [CrossRef]
- Anbalagan, A.K.; Gupta, S.; Kumar, R.R.; Tripathy, A.R.; Chaudhary, M.; Haw, S.; Murugesan, T.; Lin, H.; Chueh, Y.; Tai, N.; et al. Gamma-ray engineered surface defects on zinc oxide nanorods towards enhanced NO2 gas sensing performance at room temperature. Sens. Actuators B Chem. 2022, 369, 132255. [Google Scholar] [CrossRef]
- Bang, J.H.; Kwon, Y.J.; Lee, J.; Mirzaei, A.; Lee, H.Y.; Choi, H.; Kim, S.S.; Jeong, Y.K.; Kim, H.W. Proton-beam engineered surface-point defects for highly sensitive and reliable NO2 sensing under humid environments. J. Hazard. Mater. 2021, 416, 125841. [Google Scholar] [CrossRef]
- Wang, G.; He, Z.; Shi, G.; Wang, H.; Zhang, Q.; Li, Y. Controllable construction of Titanium dioxide-Zirconium dioxide@Zinc hydroxyfluoride networks in micro-capillaries for bio-analysis. J. Colloid Interface Sci. 2015, 446, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhou, H.; Wang, Z. Synthesis, characterization and photocatalytic activity of Zn(OH)F hierarchical nanofibers prepared by a simple solution-based method. CrystEngComm 2012, 14, 2812–2816. [Google Scholar] [CrossRef]
- Eadi, S.B.; Shin, H.; Kumar, P.S.; Song, K.; Yuvakkumar, R.; Lee, H. Fluorine-implanted indium-gallium-zinc oxide (IGZO) chemiresistor sensor for high-response NO2 detection. Chemosphere 2021, 284, 131287. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Cheng, P.; Liu, Y.; Lei, Z.; Liu, M.; Yao, X.; Yan, H.; Weng, Z. Multicore-shell structured Ce-In2O3 for acetone detection by spray pyrolysis using NaCl as a high temperature auxiliary agent. Mater. Chem. Front. 2021, 6, 213–224. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Swart, H.C.; Hillie, K.T.; Motaung, D.E. Engineering of rare-earth Eu3+ ions doping on p-type NiO for selective detection of toluene gas sensing and luminescence properties. Sens. Actuators B Chem. 2021, 347, 130530. [Google Scholar] [CrossRef]
- Qin, C.; Wang, B.; Wang, Y. Metal-organic frameworks-derived Mn-doped Co3O4 porous nanosheets and enhanced CO sensing performance. Sens. Actuators B Chem. 2022, 351, 130943. [Google Scholar] [CrossRef]
- Mokrushin, A.S.; Nagornov, I.A.; Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Arkhipushkin, I.A.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Gas-sensitive nanostructured ZnO films praseodymium and europium doped: Electrical conductivity, selectivity, influence of UV irradiation and humidity. Appl. Surf. Sci. 2022, 589, 152974. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Song, P.; Yang, Z.; Wang, Q. Metal-organic framework-derived Cr-doped hollow In2O3 nanoboxes with excellent gas-sensing performance toward ammonia. J. Alloys Compd. 2021, 879, 160472. [Google Scholar] [CrossRef]
- Nagarjuna, Y.; Lin, J.; Wang, S.; Hsiao, W.; Hsiao, Y. AZO-based ZnO nanosheet MEMS sensor with different Al concentrations for enhanced H2S gas sensing. Nanomaterials 2021, 11, 3377. [Google Scholar] [CrossRef]
- Ramgir, N.S.; Goyal, C.P.; Goyal, D.; Patil, S.J.; Ikeda, H.; Ponnusamy, S.; Muthe, K.P.; Debnath, A.K. NO2 sensor based on Al modified ZnO nanowires. Mater. Sci. Semicond. Process. 2021, 134, 106027. [Google Scholar] [CrossRef]
- Jaballah, S.; Alaskar, Y.; AlShunaifi, I.; Ghiloufi, I.; Neri, G.; Bouzidi, C.; Dahman, H.; El Mir, L. Effect of Al and Mg doping on reducing gases detection of ZnO nanoparticles. Chemosensors 2021, 9, 300. [Google Scholar] [CrossRef]
- Bulut, F.; Ozturk, O.; Acar, S.; Yildirim, G. Effect of Ni and Al doping on structural, optical, and CO2 gas sensing properties of 1D ZnO nanorods produced by hydrothermal method. Microsc. Res. Tech. 2021, 85, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Huang, G.; Wang, X.; Xie, X.; Xu, G.; Lu, G.; He, X.; Tian, J.; Cui, H. High response and selectivity of single crystalline ZnO nanorods modified by In2O3 nanoparticles for n-butanol gas sensing. Sens. Actuators B Chem. 2018, 277, 144–151. [Google Scholar] [CrossRef]
- Mu, Y.; Zhou, T.; Li, D.; Liu, W.; Jiang, P.; Chen, L.; Zhou, H.; Ge, G. Highly stable and durable Zn-metal anode coated by bi-functional protective layer suppressing uncontrollable dendrites growth and corrosion. Chem. Eng. J. 2022, 430, 132839. [Google Scholar] [CrossRef]
- Tian, X.; Yao, L.; Cui, X.; Zhao, R.; Xiao, X.; Wang, Y. Novel Al-doped CdIn2O4 nanofibers based gas sensor for enhanced low-concentration n-butanol sensing. Sens. Actuators B Chem. 2022, 351, 130946. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, Y.; Zhao, H.; Zhang, X.; He, P.; Wu, L.; Liu, Y.; Yang, T. ZnOHF/N-doped carbon hybrids as a novel anode material for enhanced lithium storage. J. Alloys Compd. 2021, 889, 161705. [Google Scholar] [CrossRef]
- Du, W.; Si, W.; Du, W.; Ouyang, T.; Wang, F.; Gao, M.; Wu, L.; Liu, J.; Qian, Z.; Liu, W. Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature. J. Alloys Compd. 2020, 834, 155209. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Xiao, S.; Wang, X.; Sun, L.; Li, H.; Xie, W.; Li, Q.; Zhang, Q.; Wang, T. Low-temperature H2S detection with hierarchical Cr-doped WO3 microspheres. ACS Appl. Mater. Inter. 2016, 8, 9674–9683. [Google Scholar] [CrossRef]
- Zhang, Z.; Haq, M.; Wen, Z.; Ye, Z.; Zhu, L. Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanospheres doped with Fe. Appl. Surf. Sci. 2018, 434, 891–897. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, X.; Sun, J. UV-enhanced NO2 sensor using ZnO quantum dots sensitized SnO2 porous nanowires. Nanotechnology 2022, 33, 185501. [Google Scholar] [CrossRef]
- Zhang, Q.; Pang, Z.; Hu, W.; Li, J.; Liu, Y.; Liu, Y.; Yu, F.; Zhang, C.; Xu, M. Performance degradation mechanism of the light-activated room temperature NO2 gas sensor based on Ag-ZnO nanoparticles. Appl. Surf. Sci. 2021, 541, 148418. [Google Scholar] [CrossRef]
- Paolucci, V.; De Santis, J.; Lozzi, L.; Rigon, M.; Martucci, A.; Cantalini, C. ZnO thin films containing aliovalent ions for NO2 gas sensor activated by visible light. Ceram. Int. 2021, 47, 25017–25028. [Google Scholar] [CrossRef]
- Sun, K.; Zhan, G.; Chen, H.; Lin, S. Low-operating-temperature NO2 sensor based on a CeO2/ZnO heterojunction. Sensors 2021, 21, 8269. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Hsu, Y. Enhanced sensing ability of brush-like Fe2O3-ZnO nanostructures towards NO2 gas via manipulating material synergistic effect. Int. J. Mol. Sci. 2021, 22, 6884. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Liu, W.; Dong, H.; Wang, D.; Liu, J.; Liu, Q.; Chen, X. MOF-based nanoscale Pt catalyst decorated SnO2 porous nanofibers for acetone gas detection. J. Alloys Compd. 2022, 893, 162322. [Google Scholar] [CrossRef]
- Liang, J.; Wu, W.; Lou, Q.; Wang, K.; Xuan, C. Room temperature NO2 sensing performance of Ag nanoparticles modified VO2 nanorods. J. Alloys Compd. 2022, 890, 161837. [Google Scholar] [CrossRef]
- Navarrete, E.; Guell, F.; Martinez-Alanis, P.R.; Llobet, E. Chemical vapour deposited ZnO nanowires for detecting ethanol and NO2. J. Alloys Compd. 2022, 890, 161923. [Google Scholar] [CrossRef]
- Xu, F.; HO, H. Light-activated metal oxide gas sensors: A review. Micromachines 2017, 8, 333. [Google Scholar] [CrossRef]
- Benamara, M.; Massoudi, J.; Dahman, H.; Ly, A.; Dhahri, E.; Debliquy, M.; El Mir, L.; Lahem, D. Study of room temperature NO2 sensing performances of ZnO1−x (x = 0, 0.05, 0.10). Appl. Phys. A 2022, 128, 31. [Google Scholar] [CrossRef]
- Šetka, M.; Claros, M.; Chmela, O.; Vallejos, S. Photoactivated materials and sensors for NO2 monitoring. J. Mater. Chem. C 2021, 9, 16804–16827. [Google Scholar] [CrossRef]
- Chen, X.; Hu, J.; Chen, P.; Yin, M.; Meng, F.; Zhang, Y. UV-light-assisted NO2 gas sensor based on WS2/PbS heterostructures with full recoverability and reliable anti-humidity ability. Sens. Actuators B Chem. 2021, 339, 129902. [Google Scholar] [CrossRef]
- Hung, N.M.; Hung, C.M.; Van Duy, N.; Hoa, N.D.; Hong, H.S.; Dang, T.K.; Viet, N.N.; Thing, L.V.; Phuoc, P.H.; Van Hieu, N. Significantly enhanced NO2 gas-sensing performance of nanojunction-networked SnO2 nanowires by pulsed UV-radiation. Sens. Actuators A Phys. 2021, 327, 112759. [Google Scholar] [CrossRef]
- Kamble, V.S.; Navale, Y.H.; Patil, V.B.; Desai, N.K.; Vajekar, S.N.; Salunkhe, S.T. Studies on structural, spectral and morphological properties of co-precipitation derived Co-doped ZnO nanocapsules for NO2 sensing applications. J. Mater. Sci. Mater. Electron. 2021, 32, 26503–26519. [Google Scholar] [CrossRef]
Materials | Operating Condition | S (Rg/Ra or Ra/Rg) | Tres/Trec (s) | Detection Limit | Ref. |
---|---|---|---|---|---|
ZnO/SnO2 composite | 40 °C, UV (395 nm, 34 μW/cm2) | 25 (1 ppm) | 251/470 | 100 ppb | [40] |
Ag-ZnO nanoparticles | 25 °C, visible light (455 nm, 70 mW/cm2) | 2.5 (5 ppm) | 200/175 | 1 ppm | [41] |
Si-ZnO thin films | 75 °C, purple-blue (430 nm) | 19.1 (400 ppb) | 60/180 | - | [42] |
CeO2/ZnO nanorods | 120 °C | 190.6% (5 ppm) | 104/417 | 100 ppb | [43] |
Fe2O3-ZnO nanostructures | 300 °C | 6.34 (10 ppm) | 26/185 | 1 ppm | [44] |
3D flower-like ZnOHF | 200 °C | 82.71 (10 ppm) | 13/35 | 0.1 ppm | [14] |
0.5 at.%Al-ZnOHF | 100 °C, UV (395 nm, 6 mW/cm2) | 110.83 (10 ppm) | 35/96 | 0.25 ppm | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Wang, R.; Wu, L.; Song, H.; Zhao, J.; Liu, F.; Fu, K.; Wang, Z.; Wang, F.; Liu, J. Highly Efficient NO2 Sensors Based on Al-ZnOHF under UV Assistance. Materials 2023, 16, 3577. https://doi.org/10.3390/ma16093577
Yao X, Wang R, Wu L, Song H, Zhao J, Liu F, Fu K, Wang Z, Wang F, Liu J. Highly Efficient NO2 Sensors Based on Al-ZnOHF under UV Assistance. Materials. 2023; 16(9):3577. https://doi.org/10.3390/ma16093577
Chicago/Turabian StyleYao, Xingyu, Rutao Wang, Lili Wu, Haixiang Song, Jinbo Zhao, Fei Liu, Kaili Fu, Zhou Wang, Fenglong Wang, and Jiurong Liu. 2023. "Highly Efficient NO2 Sensors Based on Al-ZnOHF under UV Assistance" Materials 16, no. 9: 3577. https://doi.org/10.3390/ma16093577
APA StyleYao, X., Wang, R., Wu, L., Song, H., Zhao, J., Liu, F., Fu, K., Wang, Z., Wang, F., & Liu, J. (2023). Highly Efficient NO2 Sensors Based on Al-ZnOHF under UV Assistance. Materials, 16(9), 3577. https://doi.org/10.3390/ma16093577