Experimental Study of Fiber Pull-Outs in a Polymer Mortar Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Fiber Pullout Test
3. Results and Discussion
3.1. The Effect of VAE Emulsion Content on Bonding Properties
3.2. The Effect of Fiber Angle and Depth on the Bonding Properties
3.2.1. Analysis of the Failure Pattern
3.2.2. Pull-Out Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xuan, W.H.; Liu, J.Z.; Li, X.C.; Shen, D.J. Bonding performance test of polypropylene fiber and cement mortar. J. Jiangsu Univ. (Nat. Sci. Ed.) 2010, 31, 726–730. [Google Scholar]
- Chen, Y.D.; Hong, L.; Jiang, J.; Gao, P. Pull-out test of basalt fiber in cement mortar matrix. Bull. Chin. Ceram. Soc. 2019, 38, 2985–2991. [Google Scholar]
- Ma, Y.P.; Tan, M.H. Interfacial debonding strength of polypropylene monofilament and cement stone and its influencing factors. J. Tongji Univ. (Nat. Sci.) 2001, 4, 406–409. [Google Scholar]
- Zhang, X.M.; Chen, X.F.; Li, C.H.; Huo, H.F.; Chen, Y. Study on interfacial bonding properties between fiber and cement mortar. Bull. Chin. Ceram. Soc. 2021, 40, 3927–3937. [Google Scholar]
- Xu, L.H.; Yu, H.Y.; Chi, Y.; Deng, F.Q.; Hu, J. Nanomechanical properties of steel fiber-cement interface transition zone. J. Chin. Ceram. Soc. 2016, 44, 1134–1146. [Google Scholar]
- Shannag, M.J.; Brincker, R.; Hansen, W. Pullout behavior of steel fibers from cement-based composites. Cem. Concr. Res. 1997, 27, 925–936. [Google Scholar] [CrossRef]
- Choi, J.I.; Lee, B.Y. Bonding properties of basalt fiber and strength reduction according to tiber orientation. Materials 2015, 8, 6719–6727. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, J.S.; Ha, G.J.; Kim, Y.Y. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag. Cem. Concr. Res. 2007, 37, 1096–1105. [Google Scholar] [CrossRef]
- Silva, F.D.A.; Mobasher, B.; Soranakom, C.; Toledo Filho, R.D. Effect of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement based composites. Cem. Concr. Compos. 2011, 33, 814–823. [Google Scholar] [CrossRef]
- Park, J.K.; Kim, M.O.; Kim, D.J. Pullout behavior of recycled waste fishing net fibers embedded in cement mortar. Materials 2020, 13, 4195. [Google Scholar] [CrossRef]
- Dalalbashi, A.; Ghiassi, B.; Oliveira, D.V.; Freitas, A. Effect of test setup on the fiber-to-mortar pull-out response in TRM composites: Experimental and analytical modeling. Compos. Part B Eng. 2018, 143, 250–268. [Google Scholar] [CrossRef]
- Di Maida, P.; Radi, E.; Sciancalepore, C.; Bondioli, F. Pullout behavior of polypropylene macro-synthetic fibers treated with nano-silica. Constr. Build. Mater. 2015, 82, 39–44. [Google Scholar] [CrossRef]
- Pi, Z.Y.; Xiao, H.G.; Li, H. Influence of interfacial microstructure on pullout behavior and failure mechanism of steel fibers embedded in cement-based materials. Constr. Build. Mater. 2021, 304, 124688. [Google Scholar] [CrossRef]
- Garcia-Diaz, Y.; Torres-Ortega, R.; Tovar, C.T.; Quinones-Bolanos, E.; Saba, M. Characterization of pull-out behavior in the fiber–mortar interface with superficial treatments. Constr. Build. Mater. 2021, 303, 124474. [Google Scholar] [CrossRef]
- Soulioti, D.V.; Barkoula, N.M.; Koutsianopoulos, F.; Charalambakis, N.; Matikas, T.E. The effect of fibre chemical treatment on the steel fibre/cementitious matrix interface. Constr. Build. Mater. 2013, 40, 77–83. [Google Scholar] [CrossRef]
- Won, J.P.; Park, C.G.; Lee, S.J.; Kang, J.W. Bonding characteristics of recycled polyethylene terephthalate (PET) fibers coated with maleic anhydride grafted polypropylene in cement-based composites. J. Appl. Polym. Sci. 2011, 121, 1908–1915. [Google Scholar] [CrossRef]
- Alberti, M.G.; Enfedaque, A.; Gálvez, J.C.; Ferreras, A. Pull-out behaviour and interface critical parameters of polyolefin fibers embedded in mortar and self-compacting concrete matrixes. Constr. Build. Mater. 2016, 112, 607–622. [Google Scholar] [CrossRef]
- Qi, J.N.; Wu, Z.M.; Wang, J.Q. Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles. Constr. Build. Mater. 2018, 191, 764–774. [Google Scholar] [CrossRef]
- Lee, Y.; Kang, S.T.; Kim, J.K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. Constr. Build. Mater. 2010, 24, 2030–2041. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, M.; Li, H.; Zhang, Y.; Liu, Y.; Zhao, S. Bond Behaviors of Steel Fiber in Mortar Affected by Inclination Angle and Fiber Spacing. Materials 2022, 15, 6024. [Google Scholar] [CrossRef]
- Lukasenoks, A.; Macanovskis, A.; Krasnikovs, A. Composite carbon fibre embedment depth and angle configuration influence on single fibre pull-out from concrete. In Proceedings of the International Scientific Conference, Latvijas Lauksaimniecības Universitāte, Jelgava, Latvia, 23–25 May 2018. [Google Scholar]
- Gu, C.; Xun, J.Y.; Meng, B.X. Effect of polypropylene fiber on mechanical properties of two kinds of polymer modified mortar. Bull. Chin. Ceram. Soc. 2018, 37, 3764–3768. [Google Scholar]
- Liu, J.; Farzadnia, N.; Shi, C. Effects of superabsorbent polymer on interfacial transition zone and mechanical properties of ultra-high performance concrete. Constr. Build. Mater. 2020, 231, 117142. [Google Scholar] [CrossRef]
- Park, C.G.; Lee, J.H. Effect of styrene butadiene latex polymer contents on the bond properties of macro polypropylene fiber in polymer-modified cement-based composites. J. Appl. Polym. Sci. 2012, 126, E330–E337. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Pullout behavior of hook end steel fibers in geopolymers. J. Mater. Civ. Eng. 2019, 31, 04019068. [Google Scholar] [CrossRef]
- GB 175-2020; Common Portland Cement. SAC: Beijing, China, 2007.
- CECS13: 2009; Standard Test Methods for Fiber Reinforced Concrete. China Planning Press: Beijing, China, 2010.
- Redon, C.; Li, V.C.; Wu, C. Measuring and modifying interface properties of PVA fibers in ECC matrix. J. Mater. Civ. Eng. 2001, 13, 399–406. [Google Scholar] [CrossRef]
pH | Nonvolatile Matter (%) | Viscosity (mPa.s) | Dilution Stability (%) | Ethylene Content (%) |
---|---|---|---|---|
6.5 | 54.5 | 500~1000 | ≤3.5 | 16 ± 2 |
Type of Fiber | Length (mm) | Density (kg/m3) | Diameter (mm) | Tensile Strength (MPa) | Elastic Modulus (MPa) |
---|---|---|---|---|---|
GF | 6 12 18 | 2680 | 0.3 | 1700 | 72,000 |
PP | 930 | 0.3 | 556.9 | 6822.3 |
Code | Cement/g | Water/g | Sand/g | VAE/g | Defoaming Agent/g |
---|---|---|---|---|---|
Matrix 1 | 510.00 | 229.50 | 1275.00 | 0 | 0 |
Matrix 2 | 510.00 | 216.47 | 1313.25 | 28.33 | 0.98 |
Matrix 3 | 510.00 | 207.78 | 1338.75 | 47.22 | 1.65 |
Matrix 4 | 510.00 | 199.09 | 1364.25 | 66.11 | 2.31 |
Code | Glass Fiber | Polypropylene Fiber | ||||||
---|---|---|---|---|---|---|---|---|
P(N) | SD | (MPa) | SD | P(N) | SD | (MPa) | SD | |
Matrix 1 | 60.130 | 1.231 | 1.596 | 0.033 | 42.475 | 0.869 | 1.127 | 0.023 |
Matrix 2 | 69.921 | 1.431 | 1.856 | 0.038 | 45.620 | 0.934 | 1.211 | 0.025 |
Matrix 3 | 78.601 | 1.609 | 2.086 | 0.043 | 53.989 | 1.105 | 1.433 | 0.029 |
Matrix 4 | 59.340 | 1.215 | 1.575 | 0.032 | 32.170 | 0.658 | 0.854 | 0.017 |
Code | Glass Fiber | Polypropylene Fiber | ||||||
---|---|---|---|---|---|---|---|---|
P(N) | SD | (MPa) | SD | P(N) | SD | (MPa) | SD | |
T1 | 41.957 | 0.725 | 2.227 | 0.038 | 35.419 | 0.859 | 1.880 | 0.046 |
T2 | 78.601 | 1.105 | 2.086 | 0.029 | 53.989 | 1.609 | 1.433 | 0.043 |
T3 | 80.130 | 1.160 | 0.989 | 0.021 | 56.673 | 1.640 | 1.003 | 0.020 |
T4 | 52.733 | 0.593 | 2.799 | 0.031 | 28.976 | 1.079 | 1.538 | 0.057 |
T5 | 30.370 | 0.503 | 1.612 | 0.027 | 24.586 | 0.622 | 1.305 | 0.033 |
T6 | 13.716 | 0.273 | 0.728 | 0.014 | 9.326 | 0.281 | 0.495 | 0.015 |
T7 | 88.344 | 0.988 | 2.345 | 0.026 | 48.269 | 1.808 | 1.281 | 0.048 |
T8 | 51.554 | 0.681 | 1.368 | 0.018 | 33.308 | 1.055 | 0.884 | 0.028 |
T9 | 35.269 | 0.425 | 0.936 | 0.011 | 20.753 | 0.722 | 0.551 | 0.019 |
T10 | 93.470 | 1.109 | 1.654 | 0.020 | 54.169 | 1.913 | 0.958 | 0.034 |
T11 | 54.347 | 0.777 | 0.962 | 0.014 | 37.980 | 1.112 | 0.672 | 0.020 |
T12 | 39.615 | 0.608 | 0.701 | 0.011 | 29.700 | 0.811 | 0.525 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, T.; Shu, Q.; Sun, S.; Li, C.; Dai, C. Experimental Study of Fiber Pull-Outs in a Polymer Mortar Matrix. Materials 2023, 16, 3594. https://doi.org/10.3390/ma16093594
Wang L, Li T, Shu Q, Sun S, Li C, Dai C. Experimental Study of Fiber Pull-Outs in a Polymer Mortar Matrix. Materials. 2023; 16(9):3594. https://doi.org/10.3390/ma16093594
Chicago/Turabian StyleWang, Lihua, Tongshuai Li, Qinghua Shu, Shifu Sun, Chunfeng Li, and Chunquan Dai. 2023. "Experimental Study of Fiber Pull-Outs in a Polymer Mortar Matrix" Materials 16, no. 9: 3594. https://doi.org/10.3390/ma16093594
APA StyleWang, L., Li, T., Shu, Q., Sun, S., Li, C., & Dai, C. (2023). Experimental Study of Fiber Pull-Outs in a Polymer Mortar Matrix. Materials, 16(9), 3594. https://doi.org/10.3390/ma16093594