Finite Element Analysis and Experimental Study of Manufacturing Thin-Walled Five-Branched AISI 304 Stainless Steel Tubes with Different Diameters Using a Hydroforming Process
Abstract
:1. Introduction
2. Material Description and Part Features
3. Process Design and Optimization Framework
3.1. The Principle of THF Technology
3.2. Process Design
3.3. Optimization Method
3.4. FE Simulation and Experimentation
- a.
- Forming pressure.
- b.
- Axial force
- c.
- Radial balance force
4. Results and Discussion
4.1. Integral Forming Process
4.2. Adjustment of Integral Forming to a Multi-Step HF Process
4.2.1. The FE Simulation of the First Step of HF
4.2.2. Optimization of the One-Step HF and Its FE Simulation
4.2.3. FE Simulation and Analysis after Optimization of the One-Step HF
4.2.4. Optimized FE Simulation and Analysis in the Second Step of HF
4.2.5. FE Simulation and Analysis after Optimization in the Third Step of HF
4.2.6. FE Simulation of the Edge Trimming Process
4.3. HF Experiment to Produce a T-Shaped Tube, then a Five-Branched Tube
4.4. Wall Thickness Distribution of the Five-branched Tubes with Different Diameters in the Third Step of HF
4.4.1. Wall Thickness Distribution at Each Node of the Upper Edge Line
4.4.2. Wall Thickness Distribution at Each Node of the Lower Edge Line
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naghibi, M.F.; Gerdooei, M.; Jooybari, M.B. Experimental and Numerical Study on Forming Limit Diagrams of 304 Stainless Steel Tubes in the Hydroforming Process. J. Mater. Eng. Perform. 2016, 25, 5460–5467. [Google Scholar] [CrossRef]
- Yuenyong, J.; Suthon, M.; Kingklang, S.; Thanakijkasem, P.; Mahabunphachai, S.; Uthaisangsuk, V. Formability Prediction for Tube Hydroforming of Stainless Steel 304 Using Damage Mechanics Model. J. Manuf. Sci. Eng. 2018, 140, 011006. [Google Scholar] [CrossRef]
- El-Aty, A.A.; Guo, X.; Lee, M.-G.; Tao, J.; Hou, Y.; Hu, S.; Li, T.; Wu, C.; Yang, Q. A review on flexibility of free bending forming technology for manufacturing thin-walled complex-shaped metallic tubes. Int. J. Light. Mater. Manuf. 2023, 6, 165–188. [Google Scholar] [CrossRef]
- Thanakijkasem, P.; Pattarangkun, A.; Mahabunphachai, S.; Uthaisangsuk, V.; Chutima, S. Comparative study of finite element analysis in tube hydroforming of stainless steel 304. Int. J. Automot. Technol. 2015, 16, 611–617. [Google Scholar] [CrossRef]
- Hu, S.; Cheng, C.; El-Aty, A.A.; Zheng, S.; Wu, C.; Luo, H.; Guo, X.; Tao, J. Forming characteristics of thin-walled tubes manufactured by free bending process-based nontangential rotation bending die. Thin-Walled Struct. 2024, 194, 111313. [Google Scholar] [CrossRef]
- Bochnia, J.; Kozior, T.; Zys, J. The Mechanical Properties of Direct Metal Laser Sintered Thin-Walled Maraging Steel (MS1) Elements. Materials 2023, 16, 4699. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Wang, H.; Abd El-Aty, A.; Tao, J.; Wei, W.; Qin, Y.; Guo, X. Cross-section deformation behaviors of a thin-walled rectangular tube of continuous varying radii in the free bending technology. Thin-Walled Struct. 2020, 150, 106670. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Y.; Zhang, S.; Zhao, Z.; El-Aty, A.A.; Ma, Y.; Li, J. Evaluation of numerical and experimental investigations on the hybrid sheet hydroforming process to produce a novel high-capacity engine oil pan. Int. J. Adv. Manuf. Technol. 2018, 97, 3625–3636. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.; Cheng, M.; Song, H.; Zhang, X. Application of pulsating hydroforming in manufacture of engine cradle of austenitic stainless steel. Procedia Eng. 2014, 81, 2205–2210. [Google Scholar] [CrossRef]
- Thanakijkasem, P.; Uthaisangsuk, V.; Pattarangkun, A.; Mahabunphachai, S. Effect of bright annealing on stainless steel 304 formability in tube hydroforming. Int. J. Adv. Manuf. Technol. 2014, 73, 1341–1349. [Google Scholar] [CrossRef]
- Zhuang, W.; Wang, S.; Lin, J.; Balint, D.; Hartl, C. Experimental and numerical investigation of localized thinning in hydroforming of microtubes. Eur. J. Mech.-A/Solids 2012, 31, 67–76. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Seleman, M.M.E.-S.; Fydrych, D.; Çam, G. Review on Friction Stir Welding of Dissimilar Magnesium and Aluminum Alloys: Scientometric Analysis and Strategies for Achieving High-Quality Joints. J. Magnes. Alloy. 2023, in press. [Google Scholar] [CrossRef]
- Hou, Y.; Myung, D.; Park, J.K.; Min, J.; Lee, H.R.; El-Aty, A.A.; Lee, M.G. Review of Characterization and Modeling Approaches for Sheet Metal Forming of Lightweight Metallic Materials. Materials 2023, 16, 836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.H. Developments in hydroforming. J. Mater. Process. Technol. 1999, 91, 236–244. [Google Scholar] [CrossRef]
- Han, S.; Woo, Y.; Hwang, T.; Oh, I.; Moon, Y.H. Tailor layered tube hydroforming for fabricating tubular parts with dissimilar thickness. Int. J. Mach. Tools Manuf. 2019, 138, 51–65. [Google Scholar] [CrossRef]
- Lang, L.; Wang, Z.; Kang, D.; Yuan, S.; Zhang, S.; Danckert, J.; Nielsen, K. Hydroforming highlights: Sheet hydroforming and tube hydroforming. J. Am. Acad. Dermatol. 2004, 151, 165–177. [Google Scholar] [CrossRef]
- Alaswad, A.; Benyounis, K.; Olabi, A.G. Tube hydroforming process: A reference guide. Mater. Des. 2012, 33, 328–339. [Google Scholar] [CrossRef]
- Ahmed, M.; Hashmi, M.S.J. Estimation of machine parameters for hydraulic bulge forming of tubular components. J. Mater. Process. Technol. 1997, 64, 9–23. [Google Scholar] [CrossRef]
- Chu, G.-N.; Chen, G.; Lin, Y.-L.; Yuan, S.-J. Tube hydroforging−a method to manufacture hollow component with varied cross-section perimeters. J. Am. Acad. Dermatol. 2019, 265, 150–157. [Google Scholar]
- Liu, Z.; Lang, L.; Ruan, S.; Zhang, M.; Lv, F.; Qi, J. Effect of internal pressure assisted on hydroforming for CP800 high-strength steel torsion beam. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 90. [Google Scholar] [CrossRef]
- Koç, M.; Altan, T. Overall review of the tube hydroforming (THF) technology. J. Am. Acad. Dermatol. 2001, 108, 384–393. [Google Scholar] [CrossRef]
- Kim, B.; Van Tyne, C.; Lee, M.; Moon, Y. Finite element analysis and experimental confirmation of warm hydroforming process for aluminum alloy. J. Mater. Process. Technol. 2007, 187–188, 296–299. [Google Scholar] [CrossRef]
- Moon, Y.H.; Kim, D.W.; Van Tyne, C.J. Analytical model for prediction of sidewall curl during stretch-bend sheet metal forming. Int. J. Mech. Sci. 2008, 50, 666–675. [Google Scholar] [CrossRef]
- Oh, S.-I.; Jeon, B.-H.; Kim, H.-Y.; Yang, J.-B. Applications of hydroforming processes to automobile parts. J. Mater. Process. Technol. 2006, 174, 42–55. [Google Scholar] [CrossRef]
- Dohmann, F.; Hartl, C. Hydroforming-A method to manufacture lightweight parts. J. Mater. Process. Technol. 1996, 60, 669–676. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Manabe, K.-I.; Li, Y.; Misra, R.D.K. Microstructure evolution in TRIP-aided seamless steel tube during T-shape hydroforming process. Mater. Charact. 2014, 94, 149–160. [Google Scholar] [CrossRef]
- Kang, B.H.; Lee, M.Y.; Shon, S.M.; Moon, Y.H. Forming various shapes of tubular bellows using a single-step hydroforming process. J. Mater. Process. Technol. 2007, 194, 1–6. [Google Scholar] [CrossRef]
- Fiorentino, A.; Ceretti, E.; Giardini, C. Tube hydroforming compression test for friction estimation-Numerical inverse method, application, and analysis. Int. J. Adv. Manuf. Technol. 2013, 64, 695–705. [Google Scholar] [CrossRef]
- Luege, M.; Luccioni, B.M. Numerical simulation of the lubricant performance in tube hydroforming. J. Mater. Process. Technol. 2008, 198, 372–380. [Google Scholar] [CrossRef]
- Fiorentino, A.; Ceretti, E.; Giardini, C. The THF compression test for friction estimation: Study on the influence of the tube material. Key Eng. Mater. 2013, 549, 423–428. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, C.; Abd El-Aty, A.; Hu, S.; Bai, X.; Sun, J.; Guo, X.; Tao, J. Design and Implementation of a 6-DOF Robot Flexible Bending System. Robot. Comput. -Integr. Manuf. 2023, 84, 102606. [Google Scholar] [CrossRef]
- Hwang, Y.-M.; Lin, Y.-K.; Altan, T. Evaluation of tubular materials by a hydraulic bulge test. Int. J. Mach. Tools Manuf. 2007, 47, 343–351. [Google Scholar] [CrossRef]
- Bortot, P.; Ceretti, E.; Giardini, C. The determination of flow stress of tubular material for hydroforming applications. J. Mater. Process. Technol. 2008, 203, 381–388. [Google Scholar] [CrossRef]
- Michaeli, W.; Maesing, R. Injection molding and metal forming in one process step. Prog. Rubber Plast. Recycl. Technol. 2010, 26, 155–166. [Google Scholar] [CrossRef]
- Farahani, S.; Arezoodar, A.F.; Dariani, B.M.; Pilla, S. An Analytical Model for Nonhydrostatic Sheet Metal Bulging Process by Means of Polymer Melt Pressure. J. Manuf. Sci. Eng. 2018, 140, 091010. [Google Scholar] [CrossRef]
- Farahani, S.; Yelne, A.; Akhavan Niaki, F.; Pilla, S. Numerical Simulation for the Hybrid Process of Sheet Metal Forming and Injection Molding Using Smoothed Particle Hydrodynamics Method; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Xia, L.-L.; Xu, Y.; El-Aty, A.A.; Zhang, S.-H.; Nielsen, K.B.; Li, J.-M. Deformation characteristics in hydro-mechanical forming process of thin-walled hollow component with large deformation: Experimentation and finite element modeling. Int. J. Adv. Manuf. Technol. 2019, 104, 4705–4714. [Google Scholar] [CrossRef]
- Liu, C.; El-Aty, A.A.; Lee, M.-G.; Hou, Y.; Xu, Y.; Hu, S.; Cheng, C.; Tao, J.; Guo, X. Predicting the forming limits in the tube hydroforming process by coupling the cyclic plasticity model with ductile fracture criteria. J. Mater. Res. Technol. 2023, 26, 109–120. [Google Scholar] [CrossRef]
- Yuan, S.J.; Yuan, W.J.; Wang, X.S. Effect of wrinkling behavior on formability and thickness distribution in tube hydroforming. J. Mater. Process. Technol. 2006, 177, 668–671. [Google Scholar] [CrossRef]
- Zadeh, H.K.; Mashhadi, M.M. Finite element simulation and experiment in tube hydroforming of unequal T shapes. J. Mater. Process. Technol. 2006, 177, 684–687. [Google Scholar] [CrossRef]
- Imaninejad, M.; Subhash, G.; Loukus, A. Influence of end-conditions during tube hydroforming of aluminum extrusions. Int. J. Mech. Sci. 2004, 46, 1195–1212. [Google Scholar] [CrossRef]
- Ahmed, M.S.I.; Ahmed, M.M.Z.; Abd El-Aziz, H.M.; Habba, M.I.A.; Ismael, A.F.; El-Sayed Seleman, M.M.; Abd El-Aty, A.; Alamry, A.; Alzahrani, B.; Touileb, K.; et al. Cladding of Carbon Steel with Stainless Steel Using Friction Stir Welding: Effect of Process Parameters on Microstructure and Mechanical Properties. Crystals 2023, 13, 1559. [Google Scholar] [CrossRef]
- Koc, M.; Altan, T. Prediction of forming limits and parameters in the tubehydroforming process. Int. J. Mach. Tools Manuf. 2002, 42, 123–138. [Google Scholar] [CrossRef]
- Koc, M.; Billur, E.; Cora, O.N. An experimental study on the comparative assessment of hydraulic bulge test analysis methods. Mater. Des. 2011, 32, 272–281. [Google Scholar] [CrossRef]
- Bell, C.; Corney, J.; Zuelli, N.; Savings, D. A state of the art review of hydroforming technology: Its applications, research areas, history, and future in manufacturing. Int. J. Mater. Form. 2020, 13, 789–828. [Google Scholar] [CrossRef]
- Xing, H.L.; Makinouchi, A. Numerical analysis and design for tubular hydroforming. Int. J. Mech. Sci. 2001, 43, 1009–1026. [Google Scholar] [CrossRef]
- Kim, J.; Kang, S.B.; Hwang, S.M. Numerical prediction of bursting failure in tube hydroforming by the FEM considering plastic anisotropy. J. Mater. Process. Technol. 2004, 153–154, 544–549. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.W.; Song, W.J.; Kang, B.S. Analytical approach to bursting in tube hydroforming using diffuse plastic instability. Int. J. Mech. Sci. 2004, 46, 1535–1547. [Google Scholar] [CrossRef]
- Song, W.J.; Kim, S.W.; Kim, J. Analytical and numerical analysis of bursting failure prediction in tube hydroforming. J. Mater. Process. Technol. 2005, 164–165, 1618–1623. [Google Scholar] [CrossRef]
- Ray, P.; Mac Donald, B.J. Experimental study and finite element analysis of simple X- and T-branch tube hydroforming processes. Int. J. Mech. Sci. 2005, 47, 1498–1518. [Google Scholar] [CrossRef]
- Abd El-Aty, A.; Cheng, C.; Xu, Y.; Hou, Y.; Tao, J.; Hu, S.; Alzahrani, B.; Ali, A.; Ahmed, M.M.Z.; Guo, X. Modeling and Experimental Investigation of U-R Relationship of AA6061-T6 Tubes Manufactured via Free Bending Forming Process. Materials 2023, 16, 7385. [Google Scholar] [CrossRef]
- Hwang, Y.M.; Wang, K.H.; Kang, N.S. T-shape tube hydroforming of magnesium alloys with different outlet diameters. J. Manuf. Sci. Eng. 2011, 133, 061012. [Google Scholar] [CrossRef]
- Hwang, Y.M.; Wang, K.H.; Kang, N.S. Adaptive simulations in T-shape tube hydroforming with different outlet diameters. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 597–608. [Google Scholar] [CrossRef]
- Lin, F.C.; Kwan, C.T. Application of abductive network and FEM to predict an acceptable product on T-shape tube hydroforming process. Comput. Struct. 2004, 82, 1189–1200. [Google Scholar] [CrossRef]
- Li, S.-H.; Yang, B.; Zhang, W.-G.; Lin, Z.-Q. Loading path prediction for tube hydroforming process using a fuzzy control strategy. Mater. Des. 2008, 29, 1110–1116. [Google Scholar] [CrossRef]
- Teng, B.; Li, K.; Yuan, S. Optimization of loading path in hydroforming T-shape using fuzzy control algorithm. Int. J. Adv. Manuf. Technol. 2013, 69, 1079–1086. [Google Scholar] [CrossRef]
- Manabe, K.I.; Chen, X.; Kobayashi, D.; Tada, K. Development of in-process fuzzy control system for T-shape tube hydroforming. Procedia Eng. 2014, 81, 2518–2523. [Google Scholar] [CrossRef]
- Ben Abdessalem, A.; Pagnacco, E.; El-Hami, A. Increasing the stability of T-shape tube hydroforming process under stochastic framework. Int. J. Adv. Manuf. Technol. 2013, 69, 1343–1357. [Google Scholar] [CrossRef]
- Huang, T.; Song, X.; Liu, M. A Kriging-based nonprobability interval optimization of loading path in T-shape tube hydroforming. Int. J. Adv. Manuf. Technol. 2016, 85, 1615–1631. [Google Scholar] [CrossRef]
- Huang, T.; Song, X.; Liu, X. The multiobjective robust optimization of the loading path in the T-shape tube hydroforming based on dual response surface model. Int. J. Adv. Manuf. Technol. 2015, 82, 1595–1605. [Google Scholar] [CrossRef]
- Abbassi, F.; Ahmad, F.; Gulzar, S.; Belhadj, T.; Karrech, A.; Choi, H.S. Design of T-shaped tube hydroforming using finite element and artificial neural network modeling. J. Mech. Sci. Technol. 2020, 34, 1129–1138. [Google Scholar] [CrossRef]
- Hwang, Y.M.; Lin, T.C.; Chang, W.C. Experiments on T-shape hydroforming with counter punch. J. Mater. Process. Technol. 2007, 192–193, 243–248. [Google Scholar] [CrossRef]
- Mingtao, C.; Xiaoting, X.; Jianghuai, T.; Heng, G.; Jianping, W. Improvement of formability in T-shaped tube hydroforming by a three-stage punch shape. Int. J. Adv. Manuf. Technol. 2017, 95, 2931–2941. [Google Scholar] [CrossRef]
- Alaswad, A.; Olabi, A.G.; Benyounis, K.Y. Integration of finite element analysis and design of experiments to analyze the geometrical factors in bilayered tube hydroforming. Mater. Des. 2011, 32, 838–850. [Google Scholar] [CrossRef]
- Yasui, H.; Yoshihara, S.; Mori, S.; Tada, K.; Manabe, K.I. Material deformation behavior in t-shape hydroforming of metal microtubes. Metals 2020, 10, 199. [Google Scholar] [CrossRef]
- Xu, Y.; Xia, L.; Abd Ei-Aty, A.; Xie, W.; Chen, S.; Khina, B.B.; Pokrovsky, A.I.; Zhang, S.H. Revealing the dynamic behavior and micromechanisms of enhancing the formability of AA1060 sheets under high strain rate deformation. J. Mater. Res. Technol. 2023, 28, 2402–2409. [Google Scholar] [CrossRef]
- Teng, B.G.; Yuan, S.J.; Chen, Z.T.; Jin, X.R. Plastic damage of T-shape hydroforming (English Edition). Trans. Nonferrous Met. Soc. China 2012, 22, s294–s301. [Google Scholar] [CrossRef]
- Abd El-Aty, A.; Zhang, S.H.; Xu, Y.; Ha, S. Deformation behavior and anisotropic response of 2060 Al-Cu-Li alloy: Experimental investigation and computational homogenization-based crystal plasticity modeling. J. Mater. Res. Technol. 2019, 8, 1235–1249. [Google Scholar] [CrossRef]
- Poushali Das, Sayan Ganguly, Andreas Rosenkranz, Bo Wang, Jinhong Yu, Seshasai Srinivasan, Amin Reza Rajabzadeh, MXene/0D nanocomposite architectures: Design, properties and emerging applications. Mater. Today Nano 2023, 24, 100428. [CrossRef]
- Ghatak, A.; Das, M.A. Pramanik. In Polymeric Nanocomposite Materials for Sensor Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 295–322. [Google Scholar]
Element | C | Ni | Mo | Cr | Si | S | Mn | P | Fe |
---|---|---|---|---|---|---|---|---|---|
Concentration (%) | 0.07 | 7.32 | 0.218 | 18.00 | 0.50 | 0.022 | 1.35 | 0.077 | Balance |
Design Variables | Value Range |
---|---|
Internal pressure ×1/MPa | 45–55 |
Single-side feed ×2/mm | 40–50 |
Upper balance force ×3/N | 10,000–20,000 |
No. | Process Parameters | Response Size | |||
---|---|---|---|---|---|
Internal Pressure (MPa) | Single-Side Feed (mm) | Upper Balancing Force (N) | Total Height (mm) | Maximum Thinning Amount (mm) | |
1 | 50 | 45 | 15,000 | 96.1 | 1.105 |
2 | 55 | 45 | 10,000 | 101.7 | 0.937 |
3 | 50 | 50 | 20,000 | 96.8 | 1.138 |
4 | 50 | 45 | 15,000 | 96.1 | 1.105 |
5 | 55 | 50 | 15,000 | 101.9 | 1.000 |
6 | 55 | 45 | 20,000 | 97.4 | 1.030 |
7 | 50 | 40 | 20,000 | 92.0 | 1.129 |
8 | 45 | 40 | 15,000 | 90.8 | 1.181 |
9 | 45 | 45 | 20,000 | 91.5 | 1.209 |
10 | 55 | 40 | 15,000 | 97.3 | 0.976 |
11 | 45 | 50 | 15,000 | 95.5 | 1.192 |
12 | 45 | 45 | 10,000 | 94.8 | 1.161 |
13 | 50 | 40 | 10,000 | 95.7 | 1.055 |
14 | 50 | 45 | 15,000 | 96.1 | 1.105 |
15 | 50 | 50 | 10,000 | 100.1 | 1.077 |
Category | Internal Pressure (MPa) | (mm) | (N) | (mm) | Total Height (mm) | Compound Desirability |
---|---|---|---|---|---|---|
Value | 46.8182 | 50.42 | 10,000.85 | 1.1393 | 98.1574 | 0.978297 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Aty, A.A.; Xu, Y.; Xie, W.; Xia, L.-L.; Hou, Y.; Zhang, S.; Ahmed, M.M.Z.; Alzahrani, B.; Ali, A.; Huang, X.; et al. Finite Element Analysis and Experimental Study of Manufacturing Thin-Walled Five-Branched AISI 304 Stainless Steel Tubes with Different Diameters Using a Hydroforming Process. Materials 2024, 17, 104. https://doi.org/10.3390/ma17010104
El-Aty AA, Xu Y, Xie W, Xia L-L, Hou Y, Zhang S, Ahmed MMZ, Alzahrani B, Ali A, Huang X, et al. Finite Element Analysis and Experimental Study of Manufacturing Thin-Walled Five-Branched AISI 304 Stainless Steel Tubes with Different Diameters Using a Hydroforming Process. Materials. 2024; 17(1):104. https://doi.org/10.3390/ma17010104
Chicago/Turabian StyleEl-Aty, Ali Abd, Yong Xu, Wenlong Xie, Liang-Liang Xia, Yong Hou, Shihong Zhang, Mohamed M. Z. Ahmed, Bandar Alzahrani, Alamry Ali, Xinyue Huang, and et al. 2024. "Finite Element Analysis and Experimental Study of Manufacturing Thin-Walled Five-Branched AISI 304 Stainless Steel Tubes with Different Diameters Using a Hydroforming Process" Materials 17, no. 1: 104. https://doi.org/10.3390/ma17010104
APA StyleEl-Aty, A. A., Xu, Y., Xie, W., Xia, L. -L., Hou, Y., Zhang, S., Ahmed, M. M. Z., Alzahrani, B., Ali, A., Huang, X., & Sobh, A. S. (2024). Finite Element Analysis and Experimental Study of Manufacturing Thin-Walled Five-Branched AISI 304 Stainless Steel Tubes with Different Diameters Using a Hydroforming Process. Materials, 17(1), 104. https://doi.org/10.3390/ma17010104