Strengthening Device for Improving Shear Performance of Anchor Cable in Rock Support
Abstract
:1. Introduction
2. Analysis of Shear Characteristics of Cable Bolt
2.1. Field Investigation on Cable-Bolt Failure
2.2. Shear Failure Mechanism
3. Strengthening Method and Design of Cable-Bolt Free-Section Strengthening Device
3.1. Introduction to Cable-Bolt Free-Section Strengthening Device
3.2. Parameter Design
4. Performance and Type Selection Simulations
4.1. Models and Schemes
4.2. Model Parameters
4.3. Simulation Results and Analysis
5. Laboratory Experiments
5.1. Experimental Devices and Process
5.2. Experimental Results and Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, S. Topical areas of research needs in ground control: A state of the art review on coal mine ground control. Int. J. Min. Sci. Technol. 2010, 25, 1–6. [Google Scholar] [CrossRef]
- Murrhy, M.; Finfinger, G.L.; Peng, S. Guest editorial—Special issue on ground control in mining. Int. J. Min. Sci. Technol. 2016, 26, 1–2. [Google Scholar] [CrossRef]
- Kang, H.P. Analysis on the application of bolt support in coal mine roadways. China J. Rock Mech. Eng. 2010, 29, 649–664. [Google Scholar]
- Wang, F.T.; Shang, J.J.; Zhao, B.; Cao, Q.H.; Niu, T.C. Strengthened anchor cable support mechanism and its parameter optimization design for roadway’s dynamic pressure section. J. China Univ. Min. Technol. 2022, 51, 56–66. [Google Scholar] [CrossRef]
- Kang, H.P. Sixty years development and prospects of rock bolting technology for underground coal mine roadways. J. China Univ. Min. Technol. 2016, 45, 1072–1081. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, T.Q.; Gao, J.; Liu, J.L. Deformation mechanism and control technology for semi coal and rock roadway with structural plane under shearing force. J. Min. Saf. Eng. 2017, 34, 527–534. [Google Scholar] [CrossRef]
- Huang, B.X.; Zhang, N.; Jing, H.W.; Kan, J.G.; Meng, B.; Li, N.; Xie, W.B.; Jiao, J.B. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway. J. China Coal Soc. 2020, 45, 911–926. [Google Scholar] [CrossRef]
- Jing, H.W.; Wu, J.Y.; Yin, Q.; Shi, X.S.; Zhao, Z.L. Particle flow simulation of rock burst and roof fall of deep coal roadway under dynamic disturbance. China J. Rock Mech Eng. 2020, 36, 3475–3487. [Google Scholar] [CrossRef]
- Sun, L.H.; Zhang, H.Y.; Zhang, X.J.; Mu, Y.P.; Wang, S.; Yang, X.D.; Yang, B.S.; Lan, C.R. Large deformation characteristics and full cable support technology of dynamic pressure roadways in extremely soft coal seams. J. Min. Saf. Eng. 2021, 38, 937–945. [Google Scholar] [CrossRef]
- Mirzaghorbanali, A.; Rasekh, H.; Aziz, N.; Yang, G.; Khaleghparast, S.; Nemcik, J. Shear strength properties of cable bolts using a new double shear instrument, experimental study, and numerical simulation. Tunn. Undergr. Space Technol. 2017, 70, 240–253. [Google Scholar] [CrossRef]
- Aziz, N.; Mirzaghorbanali, A.; Nemcik, J.; Heemann, K.; Mayer, S. Shear strength properties of plain and spirally profled cable bolts 1. Can. Geotech. J. 2015, 52, 1490–1495. [Google Scholar] [CrossRef]
- Aziz, N.; Rasekh, H.; Mirzaghorbanali, A.; Yang, G.; Khaleghparast, S.; Nemcik, J. An Experimental Study on the Shear Performance of Fully Encapsulated Cable Bolts in Single Shear Test. Rock Mech. Rock Eng. 2018, 51, 2207–2221. [Google Scholar] [CrossRef]
- Aziz, N.; Rasekh, H.; Mirzaghorbanali, A.; Anzanpour, S.; Rastegarmanesh, A.; Khaleghparat, S.; Nemcik, J.; Oh, J.; Si, G. Angle shear testing of 15.2 mm seven wire cable bolt. Rock Mech. Rock Eng. 2022, 55, 3919–3937. [Google Scholar] [CrossRef]
- Li, X.; Nemcik, J.; Mirzaghorbanali, A.; Aziz, N.; Rasekh, H. Analytical model of shear behaviour of a fully grouted cable bolt subjected to shearing. Int. J. Rock Mech. Min. 2015, 80, 31–39. [Google Scholar] [CrossRef]
- Li, X.; Aziz, N.; Mirzaghorbanali, A. Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear. Rock Mech. Rock Eng. 2016, 49, 2723–2735. [Google Scholar] [CrossRef]
- Craig, P.; Aziz, N. Shear testing of 28 mm hollow strand “TG” cable bolt. In Proceedings of the Coal Operators Conference, Wollongong, NSW, Australia, 6–8 February 2010; pp. 171–179. Available online: https://ro.uow.edu.au/engpapers/3580/ (accessed on 5 December 2022).
- Rasekh, H.; Aziz, N.; Mirzaghorbanali, A.; Nemcik, J.; Li, X.; Yang, G.; Khaleghparast, S. Double shear testing of cable bolts with no concrete face contacts. Procedia Eng. 2017, 191, 1169–1177. [Google Scholar] [CrossRef]
- Yang, R.S.; Li, Y.L.; Wang, M.S.; Zhu, H.; Chen, Y.X.; Xiao, C.L.; Zhao, Y. Experimental study of shear mechanical properties of shear mechanical properties of prestressed cable bolts. J. China Univ. Min. Technol. 2018, 47, 1166–1174. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, Y.; Hu, Z.; Nie, Y. Shear test of pre-stressed anchor block and fracture mechanism analysis of anchor cable. Rock Mech. Rock Eng. 2023, 56, 589–601. [Google Scholar] [CrossRef]
- Li, X.; Yang, G.; Nemcik, J.; Mirzaghorbanali, A.; Aziz, N. Numerical investigation of the shear behaviour of a cable bolt in single shear test. Tunn. Undergr. Space Technol. 2019, 84, 227–236. [Google Scholar] [CrossRef]
- Sun, J.B.; Liu, Q.W.; Li, W.T.; Yang, X.Z.; Yang, B.; Li, T.C. Numerical implementation of rock bolts with yield and fracture behaviour under tensile-shear load. Eng. Fail. Anal. 2022, 139, 106462. [Google Scholar] [CrossRef]
- Saadat, M.; Taheri, A. Efect of Contributing Parameters on the Behaviour of a Bolted Rock Joint Subjected to Combined Pull-and-Shear Loading: A DEM Approach. Rock Mech. Rock Eng. 2020, 53, 383–409. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Zhang, C.; Wei, C.; Canbulat, I.; Saydam, S.; Sepasgozar, S. A new concept to design combined support under dynamic loading using numerical modelling. Tunn. Undergr. Space Technol. 2021, 117, 104132. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Yang, A.; Feghali, P.; Skrzypkowski, K. A numerical investigation to calculate ultimate limit state capacity of cable bolts subjected to impact loading. Appl. Sci. 2023, 13, 15. [Google Scholar] [CrossRef]
- Wang, X.Q. Analysis for bearing characteristics and reinforcement effect of counter-pulled bolts and cables. J. China Coal Soc. 2019, 44, 430–438. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, Z.H.; Jiang, B.; Gao, H.; Zhang, P. Research on an automatic roadway formation method in deep mining areas by roof cutting with high-strength bolt-grouting. Int. J. Rock Mech. Min. Sci. 2020, 128, 104264. [Google Scholar] [CrossRef]
- Chen, A.M.; Shen, J.; Gu, X. Model experiment study on the different reinforcement effects of un-bonded anchor cable and full-length bonded anchor cable in rock engineering. China J. Rock Mech. Eng. 2005, 24, 2689–2696. [Google Scholar] [CrossRef]
- Shan, R.; Bao, Y.; Huang, P.; Liu, W.; Li, G. Study on double-shear test of anchor cable and c-shaped tube. Shock Vib. 2021, 2021, 9948424. [Google Scholar] [CrossRef]
- Shan, R.; Zhang, S.; Huang, P.; Liu, W. Research on full section anchor cable and C-shaped tube support system of deep layer roadway. Geofluids 2021, 2021, 5593601. [Google Scholar] [CrossRef]
- Shan, R.; Tong, X.; Huang, P.; Yuang, H.; Bao, Y.; Liu, N. Research on the anchor cable with c-shaped tube and its mechanical properties. Rock Soil Mech. 2022, 43, 602–614. [Google Scholar] [CrossRef]
- Kang, H.P.; Lin, J.; Wu, Y.Z. High pretensioned stress and intersive cable bolting technology set in full section and application in entry affected by dynamic pressure. J. China Coal Soc. 2009, 34, 1153–1159. [Google Scholar] [CrossRef]
- Li, G.C.; Sun, H.; Zhang, N.; Jiang, Z.H.; Zhang, Z.L. Application research on new high-strength anchor cable bundle based on the shear stress distribution of anchor cable. J. China Coal Soc. 2015, 40, 1008–1014. [Google Scholar] [CrossRef]
- He, M.C.; Ren, S.L.; Guo, L.J.; Lin, W.J.; Zhang, T.W.; Tao, Z.G. Experimental study on influence of host rock strength on shear performance of Micro-NPR steel bolted rock joints. Int. J. Rock Mech Min. Sci. 2022, 159, 105236. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.S. Analysis of deformation characteristics of prestressed anchor bolt based on shear test. J. Rock Soil Mech. 2014, 35, 2231–2240. [Google Scholar] [CrossRef]
- Jalalifar, H.; Aziz, N. Analytical behaviour of bolt-joint intersection under lateral loading conditions. Rock Mech. Rock Eng. 2010, 43, 89–94. [Google Scholar] [CrossRef]
- Dight, P.M. Improvements to the Stability of Rock Walls in Open Pit Mines. Ph.D. Thesis, Monash University, Melbourne, VIC, Australia, 1983. [Google Scholar]
- Pellet, F. Strength and Deformability of Jointed Rock Masses Reinforced by Rock Bolts. Ph.D. Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland, 1993. Available online: https://www.researchgate.net/publication/37408145 (accessed on 25 December 2023).
- Li, Y.Z.; Liu, C.H. An analytical model of jointed rock bolts under the combination of tensile and shear loads. China J. Rock Mech. Eng. 2016, 35, 2471–2478. [Google Scholar] [CrossRef]
- Li, Y.Z.; Liu, C.H. Experimental Study on the Shear Behavior of Fully Grouted Bolts. Constr. Build. Mater. 2019, 223, 1123–1134. [Google Scholar] [CrossRef]
- GB/T 50010-2010; Chinese National Standard. Code for Design of Concrete Structures. China Architecture & Building Press: Beijing, China, 2010; p. 153.
- Wang, J.; Wei, L.; Song, Z.; Li, L.; Feng, S.; Cheng, Y. A new energy-absorbing bolt used for large deformation control of tunnel surrounding rock. Int. J. Min. Sci. Technol. 2022, 32, 1031–1043. [Google Scholar] [CrossRef]
- Zhu, Z.D.; Shu, X.Y.; Chen, W.Z. Optimization study on thread connection parameters of an improved hollow grouting bolt. J. China Coal Soc. 2021, 47, 2300–2310. [Google Scholar] [CrossRef]
- Guo, Z.X.; Zhang, S.Y. Static Caculation Handbook for Practical Structure; China Machine Press: Beijing, China, 2009; pp. 483–488. [Google Scholar]
- Liu, S.W.; Fu, M.X.; Jia, H.S.; Li, W.B. Shear Characteristics of Cuneiform Reaming Anchorage Bolts in Coal Mine Roadways. Rock Mech. Rock Eng. 2019, 52, 1931–1943. [Google Scholar] [CrossRef]
Wall Thickness (mm) | Outer Diameter (mm) | Density (kg/m3) | Yield Strength (MPa) | Peak Strength (MPa) | Elongation (%) |
---|---|---|---|---|---|
2 | 25 | 7800 | 355 | 600 | 16 |
Analysis Step | Tensile Displacement U0 (mm) | Confining Pressure p0 (MPa) | Shear Speed V1 (mm/s) | Step Time T (s) | Diagram of Loading Process |
---|---|---|---|---|---|
Step-1 | 1.7 | 1 | 0 | 1 | |
Step-2 | 0 | 0 | 0.2 | 250 |
Material Type | Density (kg/m3) | Poisson’s Ratio | Young’s Modulus (GPa) | Friction Angle (°) | Cohesion (MPa) | Yield Strength (MPa) | Peak Strength (MPa) | Peak Strain (%) |
---|---|---|---|---|---|---|---|---|
Rock | 2600 | 0.2 | 21.0 | 30.0 | 4.1 | — | — | — |
Steel pipe | 7800 | 0.3 | 206 | — | — | 355 | 600 | 10 |
Density (kg/m3) | Poisson’s Ratio | Young’s Modulus (GPa) | Ultimate Elastic Strain | Tensile Fracture Strain | Shear Fracture Strain | Displacement at Failure (mm) |
---|---|---|---|---|---|---|
7800 | 0.3 | 210 | 0.008 | 0.06 | 0.02 | 0.3 |
Schemes | Peak Shear Force (kN) | Increment (%) | Maximum Axial Force (kN) | Increment (%) | Ultimate Shear Displacement (mm) | Cable Shear Displacement (mm) |
---|---|---|---|---|---|---|
S1-N | 283 | - | 258 | - | 34.7 | 25 |
S2-O | 397 | 40.3 | 314 | 21.7 | 40.4 | 34 |
S3-C | 396 | 39.9 | 304 | 17.8 | 38.4 | 32 |
S4-Q | 399 | 41.0 | 312 | 20.9 | 40.3 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Liu, S.; Jia, H.; Fu, M.; He, D. Strengthening Device for Improving Shear Performance of Anchor Cable in Rock Support. Materials 2024, 17, 197. https://doi.org/10.3390/ma17010197
Feng C, Liu S, Jia H, Fu M, He D. Strengthening Device for Improving Shear Performance of Anchor Cable in Rock Support. Materials. 2024; 17(1):197. https://doi.org/10.3390/ma17010197
Chicago/Turabian StyleFeng, Chao, Shaowei Liu, Housheng Jia, Mengxiong Fu, and Deyin He. 2024. "Strengthening Device for Improving Shear Performance of Anchor Cable in Rock Support" Materials 17, no. 1: 197. https://doi.org/10.3390/ma17010197
APA StyleFeng, C., Liu, S., Jia, H., Fu, M., & He, D. (2024). Strengthening Device for Improving Shear Performance of Anchor Cable in Rock Support. Materials, 17(1), 197. https://doi.org/10.3390/ma17010197