Study on the Crystallization Behavior of Neodymium Rare-Earth Butadiene Rubber Blends and Its Effect on Dynamic Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Sample Preparation
2.3. Testing and Characterization
3. Results
3.1. Crystallization and Melting Behavior
3.2. Crystallization Kinetics
3.3. Dynamic Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friebe, L.; Nuyken, O.; Obrecht, W. Neodymium-Based Ziegler/Natta Catalysts and their Application in Diene Polymerization. Adv. Polym. Sci. 2006, 204, 1–154. [Google Scholar] [CrossRef]
- Cheng, B.J.; Du, A.H.; Duin, M.V.; Dikland, H. Handbook of Synthetic Rubber, 1st ed.; Chemical Industry Press: Beijing, China, 2021; pp. 179–199. [Google Scholar]
- Chatarsa, C.; Prasassarakich, P.; Rempel, G.L.; Hinchiranan, N. The influence of Ni/Nd-based Ziegler–Natta catalyst on microstructure configurations and properties of butadiene rubber. J. Appl. Polym. Sci. 2015, 132, 41834. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, H.; Wu, Y. Isothermal Crystallization Kinetics and Morphological Features of High Cis Polybutadiene Produced with Rare Earth Catalyst. Acta Polym. Sin. 2016, 12, 1743–1751. (In Chinese) [Google Scholar] [CrossRef]
- Doan, V.A.; Nobukawa, S.; Ohtsubo, S.; Tada, T.; Yamaguchi, M. Crystallization behavior of polybutadiene containing silica particles. J. Appl. Polym. Sci. 2012, 128, 1848–1853. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L. Crystallization Kinetics of cis-1,4-Polybutadiene. J. Appl. Polym. Sci. 2010, 116, 1408–1413. [Google Scholar] [CrossRef]
- Wrana, C.; Schawe, J.E. Isothermal crystallization of cis-1.4-polybutadiene at low temperatures. Thermochim. Acta 2020, 690, 178669. [Google Scholar] [CrossRef]
- Li, S.; Yu, F. The effect of oil filling on the processing and crystalline properties of rare earth cis-polybutadiene rubber. Syn-Thetic Rubber Ind. 1981, 5, 209–212. [Google Scholar]
- Saijo, K.; Zhu, Y.P.; Hashimoto, T.; Wasiak, A.; Brzostowski, N. Oriented Crystallization of Crosslinked cis-1,4-Polybutadiene Rubber. J. Appl. Polym. Sci. 2007, 105, 137–157. [Google Scholar] [CrossRef]
- Cai, J.L.; Li, G.; Dong, W.M.; Zhou, E. Nonisothermal crystallization kinetics of trans-1,4-polybutadiene. J. Funct. Polym. 2004, 17, 123–130. (In Chinese) [Google Scholar]
- Di Lorenzo, M.L. Thermal Properties and Three-Phase Structure of cis-1,4-Polybutadiene. Open Macromol. J. 2010, 4, 15–21. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, G.; Zhou, E. Crystalline morphology of rare earth polybutadiene. J. Electron Microsc. 1984, 2, 51–57. [Google Scholar]
- Wunde, M.; Klueppel, M. Effect of filler and blending with SBR and NR on thermally induced crystallization of high-cis BR as evaluated by dynamic mechanical analysis. Express Polym. Lett. 2020, 14, 261–271. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J. Effect of styrene-butadiene-styrene triblock copolymer on non-isothermal crystallization kinetics and melting behavior of syndiotactic 1,2-polybutadiene. J. Therm. Anal. Calorim. 2018, 136, 2269–2280. [Google Scholar] [CrossRef]
- Yao, H.; Liu, J.-T.; Zhang, L.-Q.; Yan, S.-K. Phase structure and crystallization behavior of polyethylene in its blends with cis-1,4-butadiene rubber. Chin. J. Polym. Sci. 2015, 33, 386–394. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Zhu, W.; Xie, X.; Ji, H.; Bi, J. Effect of Dilution on the Crystallization Kinetics of Neodymium-Based Rare Earth Polybutadiene Rubber. Polymers 2023, 16, 35. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Song, Y.; Zheng, Q. Rheological behaviors of randomly crosslinked low density polyethylene and its gel network. Polymers 2012, 53, 3035–3042. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Yang, H.-M.; Song, Y.-H.; Zheng, Q. Influence of crosslinking on physical properties of low density polyethylene. Chin. J. Polym. Sci. 2012, 30, 837–844. [Google Scholar] [CrossRef]
- Severina, N.L.; Bukhina, M.F. The effect of an aerosil on melting and crystallization of unvulcanized blends and vulcanizates based on the siloxane rubber, SKTFV. Polym. Sci. USSR 1983, 25, 603–613. [Google Scholar] [CrossRef]
- Wan, C.; Dong, W.; Zhang, Y.; Zhang, Y. Intercalation process and rubber–filler interactions of polybutadiene rub-ber/organoclay nanocomposites. J. Appl. Polym. Sci. 2008, 107, 650–657. [Google Scholar] [CrossRef]
- Wagner, J.; Phillips, J.P. The mechanism of crystallization of linear polyethylene, and its copolymers with octene, over a wide range of supercoolings. Polymers 2001, 42, 8999–9013. [Google Scholar] [CrossRef]
- Lauritzen, J.I., Jr.; Hoffman, J.D. Hoffman. Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J. Appl. Phys. 1973, 44, 4340–4352. [Google Scholar] [CrossRef]
- Wang, M.-J.; Zhang, P.; Mahmud, K.; Morris, M.; Doshi, D.; Krishnan, S.; Alex, R.; Kurian, T. Carbon—Silica Dual Phase Filler, a new Generation Reinforcing Agent for Rubber: Part IX. Application to Truck Tire Tread Compound. Rubber Chem. Technol. 2001, 74, 124–137. [Google Scholar] [CrossRef]
- Wingard, D. Use of DSC and DMA to study crystallization as a possible cause for a glove tear. J. Therm. Anal. Calorim. 2010, 102, 469–476. [Google Scholar] [CrossRef]
Nd-BR | N330 | TDAE Oil | ZnO | SA | Sulfur | CBS | ||||
---|---|---|---|---|---|---|---|---|---|---|
BR100 | 100 | |||||||||
BR-20T | 100 | 20 | ||||||||
BR-20 PHR oil-CB * | 100 | 50 | 20 | 5 | 2 | 1.5 | 0.9 | |||
Nd-BR | N234 | Silica | TESPT | TDAE oil | ZnO | SA | Sulfur | CBS | DPG | |
BR-37.5T | 100 | 37.5 | ||||||||
BR-37.5 PHR oil * | 100 | 37.5 | 4 | 2 | 1.5 | 1.8 | 1.5 | |||
BR-37.5 PHR oil-silica * | 100 | 5.6 | 70 | 5.6 | 37.5 | 4 | 2 | 1.5 | 1.8 | 1.5 |
Tc,peak (°C) | ΔHc (J/g) | Tm,peak (°C) | ΔHm (J/g) | Tc,cold (°C) | ΔHc,cold (J/g) | (°C) | Ea (kJ/mol) | |
---|---|---|---|---|---|---|---|---|
BR100 | −37.44 | 39.34 | −10.11 | 43.75 | / | / | −0.135 | −264.3 |
BR−37.5T | −52.70 | 22.99 | −13.14 | 25.83 | −57.72 | 0.987 | / | −48.1 |
BR-37.5 PHR oil-cured | −26.33 | 0.41 | −48.85 | 0.201 | / | |||
BR-37.5 PHR oil-silica | −41.30 | 15.01 | −15.23 | 17.07 | / | / | −5.23 | −239.1 |
BR-37.5 PHR oil-silica-cured | −57.16 | 2.83 | −30.39 | 4.10 | −53.85 | 0.626 | −10.16 | −155.8 |
BR-20T | −46.27 | 30.66 | −12.33 | 32.09 | / | / | / | −116.8 |
BR-20 PHR oil-CB | −39.55 | 21.52 | −13.94 | 22.16 | / | / | −3.13 | −224.9 |
BR-20 PHR oil-CB-cured | −56.38 | 3.73 | −28.42 | 6.27 | −52.15 | 1.279 | −21.60 | ≥−56 °C: −29.4 ≤−56 °C: 9.97 |
Tc (°C) | Tm,peak (°C) | t1/2 (s) | n | lgk | ||
---|---|---|---|---|---|---|
Silica system | BR-20 PHR oil | −38 | −14.58 | 198.48 | 1.9662 | −4.8374 |
−40 | −14.00 | 186.42 | 2.0081 | −4.7249 | ||
−42 | −13.66 | 161.52 | 1.9004 | −4.5535 | ||
−44 | −13.46 | 143.76 | 2.1340 | −4.8427 | ||
−46 | −13.38 | 134.70 | 2.2232 | −4.8913 | ||
BR-20 PHR oil-silica | −26 | −11.90 | 334.44 | 2.1798 | −5.6569 | |
−28 | −12.63 | 209.04 | 2.1995 | −5.0839 | ||
−30 | −13.32 | 122.40 | 2.2554 | −5.6049 | ||
−32 | −13.95 | 87.60 | 2.3141 | −4.7527 | ||
−34 | −14.48 | 56.58 | 2.4124 | −4.4582 | ||
BR-20 PHR oil-silica-cured | −38 | −21.95 | 292.98 | 1.55 | −4.0175 | |
−39 | −22.42 | 246.90 | 1.63 | −4.176 | ||
−40 | −22.80 | 191.70 | 1.73 | −4.2012 | ||
−41 | −23.24 | 166.50 | 1.80 | −4.2557 | ||
−42 | −23.66 | 131.10 | 1.89 | −4.2271 | ||
Carbon black system | BR-20 PHR oil | −32 | −12.36 | 267.00 | 1.97 | −5.0068 |
−34 | −12.90 | 203.70 | 1.95 | −4.7291 | ||
−36 | −12.64 | 154.80 | 1.98 | −4.5457 | ||
−38 | −11.96 | 127.50 | 2.24 | −4.9465 | ||
−40 | −11.70 | 102.54 | 2.36 | −4.9469 | ||
BR-20 PHR oil-CB | −24 | −10.56 | 594.78 | 1.95 | −5.5629 | |
−26 | −11.49 | 352.50 | 1.95 | −5.1218 | ||
−28 | −12.22 | 236.52 | 1.96 | −4.9977 | ||
−30 | −12.93 | 152.10 | 2.20 | −4.8771 | ||
−32 | −13.46 | 100.92 | 2.31 | −4.8175 | ||
BR-20 PHR oil-CB-cured | −52 | −28.02 | 664.32 | 1.71 | −4.9868 | |
−54 | −28.55 | 614.58 | 1.78 | −5.1127 | ||
−56 | −29.01 | 564.42 | 1.93 | −5.4321 | ||
−58 | −29.42 | 573.60 | 1.91 | −5.3886 | ||
−60 | −29.72 | 595.44 | 1.96 | −5.5483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhu, W.; Li, X.; Xie, X.; Ji, H.; Wei, Y.; Bi, J. Study on the Crystallization Behavior of Neodymium Rare-Earth Butadiene Rubber Blends and Its Effect on Dynamic Mechanical Properties. Materials 2024, 17, 256. https://doi.org/10.3390/ma17010256
Zhang X, Zhu W, Li X, Xie X, Ji H, Wei Y, Bi J. Study on the Crystallization Behavior of Neodymium Rare-Earth Butadiene Rubber Blends and Its Effect on Dynamic Mechanical Properties. Materials. 2024; 17(1):256. https://doi.org/10.3390/ma17010256
Chicago/Turabian StyleZhang, Xiaohu, Wenbin Zhu, Xiaofan Li, Xinzheng Xie, Huan Ji, Yanxing Wei, and Jifu Bi. 2024. "Study on the Crystallization Behavior of Neodymium Rare-Earth Butadiene Rubber Blends and Its Effect on Dynamic Mechanical Properties" Materials 17, no. 1: 256. https://doi.org/10.3390/ma17010256
APA StyleZhang, X., Zhu, W., Li, X., Xie, X., Ji, H., Wei, Y., & Bi, J. (2024). Study on the Crystallization Behavior of Neodymium Rare-Earth Butadiene Rubber Blends and Its Effect on Dynamic Mechanical Properties. Materials, 17(1), 256. https://doi.org/10.3390/ma17010256