Antimicrobial Activity of Morphology-Controlled Cu2O Nanoparticles: Oxidation Stability under Humid and Thermal Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cu2O with Three Morphologies
2.3. Characterization
2.4. Oxidation Stability Test
2.5. Antimicrobial Assays
3. Results and Discussion
3.1. Structure and Morphology
3.2. Oxidation Stability of Cu2O in Humid Conditions
3.3. Surface Oxidation of Cu2O in Humid Conditions
3.4. Oxidation Stability of Cu2O in Thermal Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raghunath, A.; Perumal, E. Metal Oxide Nanoparticles as Antimicrobial Agents: A Promise for the Future. Int. J. Antimicrob. Agents 2017, 49, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Tong, Z.-H.; Chen, J.-J.; Li, L.-L.; Yu, H.-Q. Morphology-Dependent Antimicrobial Activity of Cu/CuXO Nanoparticles. Ecotoxicology 2015, 24, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Espitia, P.J.P.; Soares, N.d.F.F.; Coimbra, J.S.d.R.; de Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, C.; Teoh, W.Y.; Marquis, C.P.; Amal, R. Cytotoxic Origin of Copper (II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano 2011, 5, 7214–7225. [Google Scholar] [CrossRef]
- Fan, W.; Wang, X.; Cui, M.; Zhang, D.; Zhang, Y.; Yu, T.; Guo, L. Differential Oxidative Stress of Octahedral and Cubic Cu2O Micro/Nanocrystals to Daphnia Magna. Environ. Sci. Technol. 2012, 46, 10255–10262. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, W.; Wu, Y.; Zhou, C.; Li, L.; Liu, Z.; Dong, J.; Zhou, K. Antibacterial Behaviors of Cu2O Particles with Controllable Morphologies in Acrylic Coatings. Appl. Surf. Sci. 2019, 465, 279–287. [Google Scholar] [CrossRef]
- Vincent, M.; Hartemann, P.; Engels-Deutsch, M. Antimicrobial Applications of Copper. Int. J. Hyg. Environ. Health 2016, 219, 585–591. [Google Scholar] [CrossRef]
- Yan, J.; Li, M.; Wang, H.; Lian, X.; Fan, Y.; Xie, Z.; Niu, B.; Li, W. Preparation and Property Studies of Chitosan-Pva Biodegradable Antibacterial Multilayer Films Doped with Cu2O and Nano-Chitosan Composites. Food Control 2021, 126, 108049. [Google Scholar] [CrossRef]
- Gong, J.; Fu, Z.; Zhou, S.; Zhang, C.; Zhu, N.; Wang, X.; Zhou, Z.; Liu, X.; Xia, L.; Xu, W. A Facile Strategy for Rapid in Situ Synthesis of Cu2O on PP Non-Woven Fabric with Durable Antibacterial Activities. Compos. Commun. 2022, 34, 101271. [Google Scholar] [CrossRef]
- Gupta, A.; Maruthapandi, M.; Das, P.; Saravanan, A.; Jacobi, G.; Natan, M.; Banin, E.; Luong, J.H.; Gedanken, A. Cuprous Oxide Nanoparticles Decorated Fabric Materials with Anti-Biofilm Properties. ACS Appl. Bio Mater. 2022, 5, 4310–4320. [Google Scholar] [CrossRef] [PubMed]
- Asmat-Campos, D.; de Oca-Vásquez, G.M.; Rojas-Jaimes, J.; Delfín-Narciso, D.; Juárez-Cortijo, L.; Nazario-Naveda, R.; Menezes, D.B.; Pereira, R.; de la Cruz, M.S. Cu2O Nanoparticles Synthesized by Green and Chemical Routes, and Evaluation of Their Antibacterial and Antifungal Effect on Functionalized Textiles. Biotechnol. Rep. 2023, 37, e00785. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, L.; Jiang, Y. Preparation and Thermal Properties of Modified Cu2O/Polypropylene (PP) Composite. Materials 2020, 13, 309. [Google Scholar] [CrossRef] [PubMed]
- Hans, M.; Erbe, A.; Mathews, S.; Chen, Y.; Solioz, M.; Mücklich, F. Role of Copper Oxides in Contact Killing of Bacteria. Langmuir 2013, 29, 16160–16166. [Google Scholar] [CrossRef] [PubMed]
- Sunada, K.; Minoshima, M.; Hashimoto, K. Highly Efficient Antiviral and Antibacterial Activities of Solid-State Cuprous Compounds. J. Hazard. Mater. 2012, 235, 265–270. [Google Scholar] [CrossRef]
- Vargas-Reus, M.A.; Memarzadeh, K.; Huang, J.; Ren, G.G.; Allaker, R.P. Antimicrobial Activity of Nanoparticulate Metal Oxides against Peri-Implantitis Pathogens. Int. J. Antimicrob. Agents 2012, 40, 135–139. [Google Scholar] [CrossRef]
- Giannousi, K.; Sarafidis, G.; Mourdikoudis, S.; Pantazaki, A.; Dendrinou-Samara, C. Selective Synthesis of Cu2O and Cu/Cu2O NPs: Antifungal Activity to Yeast Saccharomyces Cerevisiae and DNA Interaction. Inorg. Chem. 2014, 53, 9657–9666. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, J.; Zhang, J.; Lan, Q.; Dai, J.; Huang, Y.; Li, G.; Fan, Q.; Fan, X.; Zhou, Z. Shape-Controlled Synthesis of Cu2O Nanocrystals by One Pot Solution-Phase Reduction Process. Chem. Phys. Lett. 2017, 671, 154–160. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Jiu, B.-B.; Gong, F.-L.; Chen, J.-L.; Zhang, H.-L. Morphology-Controllable Cu2O Supercrystals: Facile Synthesis, Facet Etching Mechanism and Comparative Photocatalytic H2 Production. J. Alloys Compd. 2017, 729, 563–570. [Google Scholar] [CrossRef]
- Fu, L.; Gao, J.; Zhang, T.; Cao, Q.; Yang, L.; Wu, Y.; Holze, R.; Wu, H. Preparation of Cu2O Particles with Different Morphologies and Their Application in Lithium Ion Batteries. J. Power Sources 2007, 174, 1197–1200. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Zhao, Y.; Sun, L. Shape-Controlled Synthesis of Cu2O Nano/Microcrystals and Their Antibacterial Activity. J. Phys. Chem. Solids 2013, 74, 1842–1847. [Google Scholar] [CrossRef]
- Pang, H.; Gao, F.; Lu, Q. Morphology Effect on Antibacterial Activity of Cuprous Oxide. Chem. Commun. 2009, 9, 1076–1078. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Kim, S.; Park, S.-H.; Park, H.; Huh, Y.-D. Morphology-Dependent Antibacterial Activities of Cu2O. Mater. Lett. 2011, 65, 818–820. [Google Scholar] [CrossRef]
- Pasanen, A.-L.; Juutinen, T.; Jantunen, M.; Kalliokoski, P. Occurrence and Moisture Requirements of Microbial Growth in Building Materials. Int. Biodeterior. Biodegrad. 1992, 30, 273–283. [Google Scholar] [CrossRef]
- Nielsen, K.F.; Holm, G.; Uttrup, L.; Nielsen, P. Mould Growth on Building Materials under Low Water Activities. Influence of Humidity and Temperature on Fungal Growth and Secondary Metabolism. Int. Biodeterior. Biodegrad. 2004, 54, 325–336. [Google Scholar] [CrossRef]
- Chang, L.; Xing, X.; Zhou, Y.; Wu, C.; Xu, H.; Jiang, L.; Ma, J.; Chen, S. Effects of Eva Content on Properties of PP/Eva Blends and Melt-Blown Nonwovens. Fibers Polym. 2022, 23, 882–890. [Google Scholar] [CrossRef]
- Lee, Y.; Wadsworth, L.C. Structure and Filtration Properties of Melt Blown Polypropylene Webs. Polym. Eng. Sci. 1990, 30, 1413–1419. [Google Scholar] [CrossRef]
- Chen, K.; Xue, D. Ph-Assisted Crystallization of Cu2O: Chemical Reactions Control the Evolution from Nanowires to Polyhedra. CrystEngComm 2012, 14, 8068–8075. [Google Scholar] [CrossRef]
- Ho, W.C.J.; Tay, Q.; Qi, H.; Huang, Z.; Li, J.; Chen, Z. Photocatalytic and Adsorption Performances of Faceted Cuprous Oxide (Cu2O) Particles for the Removal of Methyl Orange (Mo) from Aqueous Media. Molecules 2017, 22, 677. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Zhou, K.-G. Effect of OH− on Morphology of Cu2O Particles Prepared through Reduction of Cu (II) by Glucose. J. Cent. South Univ. 2012, 19, 2125–2129. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, T.; Gu, Q.; Cheng, G.; Zheng, R. Shape Control Mechanism of Cuprous Oxide Nanoparticles in Aqueous Colloidal Solutions. Powder Technol. 2012, 227, 35–42. [Google Scholar] [CrossRef]
- Vivas, L.; Chi-Duran, I.; Enríquez, J.; Barraza, N.; Singh, D.P. Ascorbic Acid Based Controlled Growth of Various Cu and Cu2O Nanostructures. Mater. Res. Express 2019, 6, 065033. [Google Scholar] [CrossRef]
- Xu, J.; Xue, D. Five Branching Growth Patterns in the Cubic Crystal System: A Direct Observation of Cuprous Oxide Microcrystals. Acta Mater. 2007, 55, 2397–2406. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef]
- Li, Q.; Xu, P.; Zhang, B.; Tsai, H.; Zheng, S.; Wu, G.; Wang, H.-L. Structure-Dependent Electrocatalytic Properties of Cu2O Nanocrystals for Oxygen Reduction Reaction. J. Phys. Chem. C 2013, 117, 13872–13878. [Google Scholar] [CrossRef]
- Marathey, P.; Khanna, S.; Pati, R.; Mukhopadhyay, I.; Ray, A. Low Temperature–Controlled Synthesis of Hierarchical Cu2O/Cu(OH)2/CuO Nanostructures for Energy Applications. J. Mater. Res. 2019, 34, 3173–3185. [Google Scholar] [CrossRef]
- Yu, Q.; Fu, Y.; Xiao, K.; Zhang, X.; Du, C.; Chen, J. A Label-Free Photoelectrochemical Biosensor with Ultra-Low-Background Noise for Lead Ion Assay Based on the Cu2O-CuO-TiO2 Heterojunction. Anal. Chim. Acta 2022, 1195, 339456. [Google Scholar] [CrossRef]
- Cesar, D.V.; Peréz, C.A.; Schmal, M.; Salim, V.M.M. Quantitative Xps Analysis of Silica-Supported Cu–Co Oxides. Appl. Surf. Sci. 2000, 157, 159–166. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Han, C.; Ma, X.; Tong, Z.; Tan, B. Cu2O/CuO Heterojunction Formed by Thermal Oxidation and Decorated with Pt Co-Catalyst as an Efficient Photocathode for Photoelectrochemical Water Splitting. J. Nanopart. Res. 2021, 23, 268. [Google Scholar] [CrossRef]
- Murali, D.S.; Kumar, S.; Choudhary, R.; Wadikar, A.D.; Jain, M.K.; Subrahmanyam, A. Synthesis of Cu2O from Cuo Thin Films: Optical and Electrical Properties. AIP Adv. 2015, 5, 047143. [Google Scholar] [CrossRef]
- Li, Q.; Deng, W.; Li, C.; Sun, Q.; Huang, F.; Zhao, Y.; Li, S. High-Flux Oil/Water Separation with Interfacial Capillary Effect in Switchable Superwetting Cu(OH)2@ Zif-8 Nanowire Membranes. ACS Appl. Mater. Interfaces 2018, 10, 40265–40273. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, R.; Wang, Y.; Zhang, T.C.; Yuan, S. Superhydrophobic Palmitic Acid Modified Cu(OH)2/CuS Nanocomposite-Coated Copper Foam for Efficient Separation of Oily Wastewater. Colloids Surf. Physicochem. Eng. Asp. 2022, 637, 128249. [Google Scholar] [CrossRef]
- Hossain, M.A.; Al-Gaashani, R.; Hamoudi, H.; Al Marri, M.J.; Hussein, I.A.; Belaidi, A.; Merzougui, B.A.; Alharbi, F.H.; Tabet, N. Controlled Growth of Cu2O Thin Films by Electrodeposition Approach. Mater. Sci. Semicond. Process. 2017, 63, 203–211. [Google Scholar] [CrossRef]
- Li, D.; Liu, T.; Yan, Z.; Zhen, L.; Liu, J.; Wu, J.; Feng, Y. Mof-Derived Cu2O/Cu Nanospheres Anchored in Nitrogen-Doped Hollow Porous Carbon Framework for Increasing the Selectivity and Activity of Electrochemical CO2-to-Formate Conversion. ACS Appl. Mater. Interfaces 2020, 12, 7030–7037. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M.C.; Lau, L.W.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in Xps Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Hart, B.R.; Polack, R.; Kobe, B.A.; Smart, R.S.C. Analysis of Mineral Surface Chemistry in Flotation Separation Using Imaging XPS. Miner. Eng. 2007, 20, 152–162. [Google Scholar] [CrossRef]
- Shang, Y.; Guo, L. Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing. Adv. Sci. 2015, 2, 1500140. [Google Scholar] [CrossRef]
- Li, Y.; Yan, L.; Wang, G. Adsorption and Dissociation of H2O on Cu2O (100): A Computational Study. J. Nat. Gas Chem. 2011, 20, 155–161. [Google Scholar] [CrossRef]
- Schulz, K.H.; Cox, D.F. Photoemission and Low-Energy-Electron-Diffraction Study of Clean and Oxygen-Dosed Cu2O(111) and (100) Surfaces. Phys. Rev. B 1991, 43, 1610. [Google Scholar] [CrossRef]
- Xu, C.; Manukyan, K.V.; Adams, R.A.; Pol, V.G.; Chen, P.; Varma, A. One-Step Solution Combustion Synthesis of CuO/Cu2O/C Anode for Long Cycle Life Li-Ion Batteries. Carbon 2019, 142, 51–59. [Google Scholar] [CrossRef]
- Yang, J.; Yeadon, M.; Kolasa, B.; Gibson, J. Oxygen Surface Diffusion in Three-Dimensional Cu2O Growth on Cu(001) Thin Films. Appl. Phys. Lett. 1997, 70, 3522–3524. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, J.C. Temperature Effect on the Cu2O Oxide Morphology Created by Oxidation of Cu(0 0 1) as Investigated by in Situ Uhv Tem. Appl. Surf. Sci. 2003, 210, 165–170. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, J.C. Temperature Effects on the Growth of Oxide Islands on Cu(1 1 0). Appl. Surf. Sci. 2004, 222, 357–364. [Google Scholar] [CrossRef]
- Bao, H.; Zhang, W.; Shang, D.; Hua, Q.; Ma, Y.; Jiang, Z.; Yang, J.; Huang, W. Shape-Dependent Reducibility of Cuprous Oxide Nanocrystals. J. Phys. Chem. C 2010, 114, 6676–6680. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.Y.; Lee, S.; Kim, Y.; Ryu, Y.B. Antimicrobial Activity of Morphology-Controlled Cu2O Nanoparticles: Oxidation Stability under Humid and Thermal Conditions. Materials 2024, 17, 261. https://doi.org/10.3390/ma17010261
Park JY, Lee S, Kim Y, Ryu YB. Antimicrobial Activity of Morphology-Controlled Cu2O Nanoparticles: Oxidation Stability under Humid and Thermal Conditions. Materials. 2024; 17(1):261. https://doi.org/10.3390/ma17010261
Chicago/Turabian StylePark, Jeong Yeon, Siwoo Lee, Yangdo Kim, and Young Bok Ryu. 2024. "Antimicrobial Activity of Morphology-Controlled Cu2O Nanoparticles: Oxidation Stability under Humid and Thermal Conditions" Materials 17, no. 1: 261. https://doi.org/10.3390/ma17010261
APA StylePark, J. Y., Lee, S., Kim, Y., & Ryu, Y. B. (2024). Antimicrobial Activity of Morphology-Controlled Cu2O Nanoparticles: Oxidation Stability under Humid and Thermal Conditions. Materials, 17(1), 261. https://doi.org/10.3390/ma17010261