Inductive Heating of Ceramic Matrix Composites (CMC) for High-Temperature Applications
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials and Manufacturing
2.2. Experimental Simulations
2.3. Experimental Setup
2.4. Experimental Visual Investigations
3. Results and Discussion
3.1. Experimental Results
3.2. Fiber Orientation
3.3. Post-Heating Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofmann, C.; Kroll, M.; Panhale, S.; Kuhn, H.; Hiller, K.; Kunke, A. Inductive Heating Based on VHF-ISM Radio Band Frequencies as Technology Platform for Efficient Heating of Metallic Micro-Scaled Bonding Layers in MEMS Packaging. IEEE Trans. Magn. 2023, 99, 2800905. [Google Scholar] [CrossRef]
- Fasholz, J. Induktive Erwärmung: Physikalische Grundlagen und Technische Anwendungen; RWE-Energie: Essen, Germany, 1991. [Google Scholar]
- Baake, B.; Nacke, E. Induktives Erwärmen: Wärmen, Härten, Glühen, Löten, Schweißen, 1st ed.; Vulkan-Verlag: Essen, Germany, 2014. [Google Scholar]
- Hans-Joachim, P. Handbuch Induktives Löten. 2. Überarbeitete Auflage; Hans-Joachim Peter Verlag: Berlin, Germany, 2017; ISBN 978-3-00-048537-4. [Google Scholar]
- Yarlagadda, S.; Kim, H.J.; Gillespie, J., Jr.; Shevchenko, N.B.; Fink, B.K. A study on the induction heating of conductive fiber reinforced composites. J. Compos. Mater. 2002, 36, 401–421. [Google Scholar] [CrossRef]
- Yarlagadda, S.; Kim, H.J.; Gillespie, J., Jr.; Shevchenko, N.B.; Fink, B.K. In Proceedings of the 45th International SAMPE Symposium, Long Beach, CA, USA, 21–25 May 2000; pp. 79–89.
- Yin, Y.; Binner, J.G.P.; Cross, T.E.; Marshall, S.J. The oxidation behaviour of carbon fibres. J. Mater. Sci. 1994, 29, 2250–2254. [Google Scholar] [CrossRef]
- Beaudet, J.; Cormier, J.; Dragon, A.; Rollin, M.; Benoit, G. Ablation Properties of C Fibers and SiC Fibers Reinforced Glass Ceramic Matrix Composites Upon Oxyacetylene Torch Exposure. Mater. Sci. Appl. 2011, 2, 1399–1406. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, Y.; Chen, Z. Ablation properties analysis of 2D C/SiC composites. Ordnance Mater. Sci. Eng. 2006, 29, 17–20. [Google Scholar]
- Park, M.-S.; Gu, J.; Lee, H.; Lee, S.-H.; Feng, L.; Fahrenholtz, W.G. Cf/SiC Ceramic Matrix Composites with Extraordinary Thermomechanical Properties up to 2000 °C. Nanomaterials 2024, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Krenkel, W.; Berndt, F. C/C–SiC composites for space applications and advanced friction systems. Mater. Sci. Eng. A 2005, 412, 177–181. [Google Scholar] [CrossRef]
- Bansal, N.P.; Lamon, J. (Eds.) Ceramic Matrix Composites: Materials, Modeling and Technology; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Chen, J.D.; Lin, J.H.C.; Ju, C.P. Effect of humidity on the tribological behavior of carbon-carbon composites. Wear 1996, 193, 38–47. [Google Scholar] [CrossRef]
- Blanco, C.; Bermejo, J.; Marsh, H.; Menendez, R. Chemical and physical properties of carbon as related to brake performance. Wear 1997, 213, 1–12. [Google Scholar] [CrossRef]
- Fitzer, E. The future of carbon-carbon composites. Carbon 1987, 25, 163–190. [Google Scholar] [CrossRef]
- Krenkel, W.; Heidenreich, B.; Renz, R. C/C-SiC Composites for Advanced Friction Systems. Adv. Eng. Mater. 2002, 4, 427–436. [Google Scholar] [CrossRef]
- Arai, Y.; Inoue, R.; Goto, K.; Kogo, Y. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review. Ceram. Int. 2019, 45, 14481–14489. [Google Scholar] [CrossRef]
- Krenkel, W. Carbon fiber reinforced CMC for high-performance structures. Int. J. Appl. Ceram. Technol. 2004, 1, 188–200. [Google Scholar] [CrossRef]
- Süß, F.; Schneider, T.; Frieß, M.; Jemmali, R.; Vogel, F.; Klopsch, L.; Koch, D. Combination of PIP and LSI processes for SiC/SiC ceramic matrix composites. Open Ceram. 2021, 5, 100056. [Google Scholar] [CrossRef]
- Schulte-Fischedick, J.; Seiz, S.; Lützenburger, N.; Wanner, A.; Voggenreiter, H. The crack development on the micro- and mesoscopic scale during the pyrolysis of carbon fibre reinforced plastics to carbon/carbon composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2171–2181. [Google Scholar] [CrossRef]
- Wich, F.; Flauder, S.; Schneider, N.; Fleck, M.; Langhof, N.; Krenkel, W.; Schafföner, S. Processing properties and pyrolysis behavior of novo-lak-hexamethylenetetramine mixtures, Advanced Manufacturing. Polym. Compos. Sci. 2023, 9, 2187687. [Google Scholar] [CrossRef]
- Nestler, D.; Nier, N.; Roder, K.; Päßler, E.; Weißhuhn, J.; Todt, A.; Würfel, H.; Kroll, L.; Spange, S.; Wielage, B.; et al. Development and Characterisation of Phenolic Resin Moulding Materials for the Production of New Short Fibre-Reinforced C/C-SiC Composites. MSF 2015, 825, 215–223. [Google Scholar] [CrossRef]
- Reichert, F.; Langhof, N.; Krenkel, W. Influence of Thermal Fiber Pretreatment on Microstructure and Mechanical Properties of C/C-SiC with Thermoplastic Polymer-Derived Matrices†. Adv. Eng. Mater. 2015, 17, 1119–1126. [Google Scholar] [CrossRef]
- Stiller, J.; Nestler, D.; Ahmad, H.; Päßler, E.; Wagner, G.; Kroll, L. New large-scale production method for C/C-SiC ceramics: Investigating the influence of chopped and nonwoven CF. Ceram. Int. 2019, 45, 9596–9603. [Google Scholar] [CrossRef]
- Stiller, J.; Nestler, D.; Ahmad, H.; Päßler, E.; Wagner, G.; Kroll, L. Thermoset IM-LSI-based C/C-SiC: Influence of flow direction and weld lines on microstructure and mechanical properties. Int. J. Appl. Ceram. Technol. 2021, 18, 280–288. [Google Scholar] [CrossRef]
- Freudenberg, W.; Wich, F.; Langhof, N.; Schafföner, S. Additive manufacturing of carbon fiber reinforced ceramic matrix composites based on fused filament fabrication. J. Eur. Ceram. Soc. 2022, 42, 1822–1828. [Google Scholar] [CrossRef]
- Best, J.; Freudenberg, W.; Langhof, N.; Schafföner, S. Processing-microstructure correlations in material extrusion additive manufacturing of carbon fiber reinforced ceramic matrix composites. Addit. Manuf. 2024, 79, 103888. [Google Scholar] [CrossRef]
- Stiller, J.; Roder, K.; Löpitz, D.; Knobloch, M.; Nestler, D.; Drossel, W.G.; Kroll, L. Combining Pultrusion with Carbonization: Process Analysis and Material Properties of CFRP and C/C. Ceramics 2023, 6, 330–341. [Google Scholar] [CrossRef]
- Cramer, C.L.; Yoon, B.; Lance, M.J.; Cakmak, E.; Campbell, Q.A.; Mitchell, D.J. Additive Manufacturing of C/C-SiC Ceramic Matrix Composites by Automated Fiber Placement of Continuous Fiber Tow in Polymer with Pyrolysis and Reactive Silicon Melt Infiltration. J. Compos. Sci. 2022, 6, 359. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Cardona, A. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Qin, L.; Du, W.; Cipiccia, S.; Bodey, A.J.; Rau, C.; Mi, J. Synchrotron X-ray operando study and multiphysics modelling of the solidification dynamics of intermetallic phases under electromagnetic pulses. Acta Mater. 2024, 265, 119593. [Google Scholar] [CrossRef]
Output Level | Generator Power [W] | Corresponding Frequency [kHz] | Depth of Penetration [mm] |
---|---|---|---|
1 | 500 | 175 | 12 |
2 | 2000 | 196 | 11 |
3 | 5000 | 220 | 10 |
4 | 7000 | 235 | 8 |
5 | 260 | 6 |
Generator Power [W] | Corresponding Frequency [kHz] | No. | CF Mass Share [%] | Maximum Temperature [°C] | Time [s] | Heating Rate [K/s] |
---|---|---|---|---|---|---|
500 | 175 | 1 | CF40+10 | 911.1 | 48 | 9.36 |
2 | CF50 | 975.9 | 48 | 10.71 | ||
2000 | 196 | 3 | CF40+10 | 1078.7 | 48 | 12.85 |
4 | CF50 | 1023.1 | 48 | 11.69 | ||
5000 | 220 | 5 | CF40+10 | 1764.7 | 30.3 | 43.00 |
7000 | 235 | 6 | CF50 | 1800.1 | 8.5 | 157.45 |
260 | 7 | CF40+10 | 1800.1 | 11.35 | 117.92 | |
8 | CF50 | 1798.1 | 11.35 | 117.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hackert, A.; Stiller, J.H.M.; Winhard, J.; Kotlan, V.; Nestler, D. Inductive Heating of Ceramic Matrix Composites (CMC) for High-Temperature Applications. Materials 2024, 17, 2175. https://doi.org/10.3390/ma17102175
Hackert A, Stiller JHM, Winhard J, Kotlan V, Nestler D. Inductive Heating of Ceramic Matrix Composites (CMC) for High-Temperature Applications. Materials. 2024; 17(10):2175. https://doi.org/10.3390/ma17102175
Chicago/Turabian StyleHackert, Alexander, Jonas H. M. Stiller, Johannes Winhard, Václav Kotlan, and Daisy Nestler. 2024. "Inductive Heating of Ceramic Matrix Composites (CMC) for High-Temperature Applications" Materials 17, no. 10: 2175. https://doi.org/10.3390/ma17102175
APA StyleHackert, A., Stiller, J. H. M., Winhard, J., Kotlan, V., & Nestler, D. (2024). Inductive Heating of Ceramic Matrix Composites (CMC) for High-Temperature Applications. Materials, 17(10), 2175. https://doi.org/10.3390/ma17102175