Preparation of Structure-Function Integrated Layered CNT/Mg Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation Process
2.1.1. CNTs’ Pre-Dispersion Treatment
2.1.2. Preparation of Layered Primitives
2.1.3. Spark Plasma Sintering
2.1.4. Hot Rolling
2.2. Material Characterization
3. Results
3.1. Distribution of CNTs on Mg Foil Surface
3.2. Mechanical Properties of Laminated CNTs/Mg Composites
3.2.1. Strengthening Mechanism of Laminated CNTs/Mg Composites
3.2.2. Toughening Mechanism of Laminated CNTs/Mg Composites
3.3. Damping Characteristics of Laminated CNTs/Mg Composites
3.4. Electromagnetic Shielding Performance of Laminated CNTs/Mg Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mordike, B.L.; Ebert, T. Magnesium: Properties—Applications—Potential. Magnesium. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Mortensen, A.; Llorca, J. Metal Matrix Composites. Annu. Rev. Mater. Res. 2010, 40, 243–270. [Google Scholar] [CrossRef]
- Guan, H.; Xiao, H.; Ouyang, S.; Tang, A.; Chen, X.; Tan, J.; Feng, B.; She, J.; Zheng, K.; Pan, F. A review of the design, processes, and properties of Mg-based composites. Nanotechnol. Rev. 2022, 11, 712–730. [Google Scholar] [CrossRef]
- Nie, K.B.; Wang, X.J.; Deng, K.K.; Hu, X.S.; Wu, K. Magnesium matrix composite reinforced by nanoparticles—A review. J. Magnes. Alloys 2020, 9, 57–77. [Google Scholar] [CrossRef]
- Deng, K.-K.; Wang, C.-J.; Nie, K.-B.; Wang, X.-J. Recent Research on the Deformation Behavior of Particle Reinforced Magnesium Matrix Composite: A Review. Acta Metall. Sin.-Engl. Lett. 2019, 32, 413–425. [Google Scholar] [CrossRef]
- Gupta, M.; Wong, W.L.E. Magnesium-based nanocomposites: Lightweight materials of the future. Mater. Charact. 2015, 105, 30–46. [Google Scholar] [CrossRef]
- Tang, H.; Barthelat, F.; Espinosa, H. An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre. J. Mech. Phys. Solids 2007, 55, 1410–1438. [Google Scholar] [CrossRef]
- Wu, H.; Fan, G. An overview of tailoring strain delocalization for strength-ductility synergy. Prog. Mater. Sci. 2020, 113, 100675. [Google Scholar] [CrossRef]
- Meng, L.; Wang, X.; Ning, J.; Hu, X.; Fan, G.; Wu, K. Beyond the dimensional limitation in bio-inspired composite: Insertion of carbon nanotubes induced laminated Cu composite and the simultaneously enhanced strength and toughness. Carbon 2018, 130, 222–232. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, X.; Hu, X.; Meng, L.; Song, Z.; Li, X.; Sun, Z.; Zhang, Q.; Wu, K. Achieving ultra-high strengthening and toughening efficiency in carbon nanotubes/magnesium composites via constructing micro-nano layered structure. Compos. Part A Appl. Sci. Manuf. 2019, 119, 225–234. [Google Scholar] [CrossRef]
- Song, Z.; Hu, X.; Xiang, Y.; Wu, K.; Wang, X. Enhanced mechanical properties of CNTs/Mg biomimetic laminated composites. Mater. Sci. Eng. A 2020, 802, 140632. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, L.; Chen, J.; Dai, P.; Pan, J. Design and Preparation of CNTs/Mg Layered Composites. Materials 2022, 15, 864. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Wang, X.; Shi, H.; Hu, X.; Xu, C.; Zhang, Q. Decipher the ultra-high strengthening and toughening efficiency of GNS-MgO/Mg layered composite with in-situ enhanced interface. Carbon 2022, 196, 783–794. [Google Scholar] [CrossRef]
- Jiang, L.; Fan, G.; Li, Z.; Kai, X.; Zhang, D.; Chen, Z.; Humphries, S.; Heness, G.; Yeung, W.Y. An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon 2011, 49, 1965–1971. [Google Scholar] [CrossRef]
- Hailong, S.; Xiaojun, W.; Yeyang, X.; Chunlei, Z.; Xuejian, L.; Chao, X.; Xiaoshi, H.; Weimin, G. Role of extrinsic and intrinsic toughening mechanisms in graphene nanosheets reinforced magnesium matrix layered composites. Mater. Sci. Eng. A 2023, 885, 145619. [Google Scholar] [CrossRef]
- Hu, X.S.; Zhang, Y.K.; Zheng, M.Y.; Wu, K. A study of damping capacities in pure Mg and Mg–Ni alloys. Scr. Mater. 2005, 52, 1141–1145. [Google Scholar] [CrossRef]
- Mahmoud, E.; Li, Z.; Qudong, W.; Hao, Z.; Wenzhen, L. Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression. J. Magnes. Alloys 2021, 11, 1608–1617. [Google Scholar] [CrossRef]
- Choi, H.K.; Lee, A.; Park, M.; Lee, D.S.; Bae, S.; Lee, S.-K.; Lee, S.H.; Lee, T.; Kim, T.-W. Hierarchical Porous Film with Layer-by-Layer Assembly of 2D Copper Nanosheets for Ultimate Electromagnetic Interference Shielding. ACS Nano 2021, 15, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Zhenming, S.; Hailong, S.; Xiaoshi, H.; Mufu, Y.; Xiaojun, W. Simultaneously enhanced mechanical properties and electromagnetic interference shielding performance of a graphene nanosheets (GNSs) reinforced magnesium matrix composite by GNSs induced laminated structure. J. Alloys Compd. 2021, 898, 162847. [Google Scholar] [CrossRef]
- Goh, C.; Wei, J.; Lee, L.; Gupta, M. Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater. 2007, 55, 5115–5121. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Yan, Y.; Fan, J.; Wang, L.; Dong, H.; Xu, B. Microstructure evolution and mechanical properties of Mg matrix composites reinforced with Al and nano SiC particles using spark plasma sintering followed by hot extrusion. J. Alloys Compd. 2017, 125, 652–664. [Google Scholar] [CrossRef]
- Habibi, M.K.; Hamouda, A.S.; Gupta, M. Hybridizing boron carbide (B4C) particles with aluminum (Al) to enhance the mechanical response of magnesium based nano-composites. J. Alloys Compd. 2013, 550, 83–93. [Google Scholar] [CrossRef]
- Akinwekomi, A.D.; Law, W.-C.; Tang, C.-Y.; Chen, L.; Tsui, C.-P. Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites. Compos. Part B Eng. 2016, 93, 302–309. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Y.; Wang, L.-D.; Zhu, Y.-P.; Wang, X.-J.; Sheng, J.; Yang, Z.-Y.; Shi, H.-L.; Shi, Z.-D.; Fei, W.-D. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process. Carbon 2018, 139, 953–963. [Google Scholar] [CrossRef]
- Liang, J.; Li, H.; Qi, L.; Tian, W.; Li, X.; Zhou, J.; Wang, D.; Wei, J. Influence of Ni-CNTs additions on the microstructure and mechanical properties of extruded Mg-9Al alloy. Mater. Sci. Eng. A 2016, 678, 101–109. [Google Scholar] [CrossRef]
- Hassan, S.F.; Gupta, M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater. Sci. Eng. A 2005, 392, 163–168. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Tang, A.; Asif, M.; Aamir, M. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J. Alloys Compd. 2014, 603, 113–118. [Google Scholar] [CrossRef]
- Qiqi, Z.; Boyu, J.; Tingting, G.; Wenshu, Y.; Pengchao, K.; Wei, X.; Hao, L.; Ziyang, X.; Guoqin, C.; Longtao, J.; et al. Preparation and fracture behavior of bionic layered SiCp/Al composites by tape casting and pressure infiltration. Ceram. Int. 2022, 49, 9060–9068. [Google Scholar] [CrossRef]
- Liu, B.X.; Huang, L.J.; Rong, X.D.; Geng, L.; Yin, F.X. Bending behaviors and fracture characteristics of laminatedductile-tough composites under different modes. Compos. Sci. Technol. 2016, 126, 94–105. [Google Scholar] [CrossRef]
- Launey, M.E.; Munch, E.; Alsem, D.H.; Barth, H.B.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 2009, 57, 2919–2932. [Google Scholar] [CrossRef]
- Wu, H.; Fan, G.; Huang, M.; Geng, L.; Cui, X.; Chen, R.; Peng, G. Fracture behavior and strain evolution of laminated composites. Compos. Struct. 2017, 163, 123–128. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Gao, S.; Lu, R.; Qin, D.; Yang, W.; Pan, F. Optimization of mechanical and damping properties of Mg–0.6Zr alloy by different extrusion processing. J. Magnes. Alloys 2015, 3, 79–85. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Zhang, L.; Wang, Q.; Zhou, H.; Li, W. Damping characterization and its underlying mechanisms in CNTs/AZ91D composite processed by cyclic extrusion and compression. Mater. Sci. Eng. A 2021, 821, 141605. [Google Scholar] [CrossRef]
- Dudarev, E.F.; Pochivalova, G.P.; Kolobov, Y.R.; Kashin, O.A.; Galkina, I.G.; Girsova, N.V.; Valiev, R.Z. True Grain-Boundary Slipping in Coarse- and Ultrafine-Grained Titanium. Russ. Phys. J. 2004, 66, 1–9. [Google Scholar] [CrossRef]
- Fan, G.D.; Zheng, M.Y.; Hu, X.S.; Xu, C.; Wu, K.; Golovin, I.S. Effect of heat treatment on internal friction in ECAP processed commercial pure Mg. J. Alloys Compd. 2013, 549, 38–47. [Google Scholar] [CrossRef]
- Fan, G.D.; Zheng, M.Y.; Hu, X.S.; Xu, C.; Wu, K.; Golovin, I.S. Improved mechanical property and internal friction of pure Mg processed by ECAP. Mater. Sci. Eng. A 2012, 549, 38–45. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, H.; Hu, X.; Ju, D. A Novel Processing for CNT-Reinforced Mg-Matrix Laminated Composites to Enhance the Electromagnetic Shielding Property. Coatings 2021, 11, 103. [Google Scholar] [CrossRef]
- Pal, R.; Lata Goyal, S.; Rawal, I.; Asha, n. Lightweight graphene encapsulated with polyaniline for excellent electromagnetic shielding performance in X-band (8.2–12.4 GHz). Mater. Sci. Eng. B 2021, 270, 115227. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Wang, J.; Qiao, L.; Gao, S.; Song, K.; Zhao, C.; Liu, X.; Zhao, D.; Pan, F. Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys. J. Mater. Sci. Technol. 2018, 35, 1075–1080. [Google Scholar] [CrossRef]
Materials | YS (MPa) | UTS (MPa) | εf (%) |
---|---|---|---|
Mg | 56.92 ± 1.21 | 72.88 ± 2.51 | 2.48 ± 0.18 |
CNTs/Mg | 34.21 ± 1.78 | 77.52 ± 2.17 | 5.17 ± 0.62 |
CNTs/Mg (R20%) | 92.34 ± 4.49 | 131.89 ± 6.42 | 3.60 ± 0.54 |
CNTs/Mg (R40%) | 114.28 ± 3.15 | 193.47 ± 2.09 | 4.75 ± 0.35 |
CNTs/Mg (R60%) | 123.81 ± 4.43 | 196.77 ± 3.13 | 5.68 ± 0.11 |
CNTs/Mg (R80%) | 180.98 ± 8.63 | 241.70 ± 10.16 | 6.90 ± 0.51 |
Material | Average Shielding Effectiveness (dB) | Average Reflection Effectiveness (dB) | Average Absorption Effectiveness (dB) |
---|---|---|---|
CNTs/Mg | 33.0 | 14.1 | 18.9 |
CNTs/Mg-R40% | 31.3 | 19.1 | 12.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Zou, L.; Liao, Z.; Lin, Z. Preparation of Structure-Function Integrated Layered CNT/Mg Composites. Materials 2024, 17, 2191. https://doi.org/10.3390/ma17102191
Deng S, Zou L, Liao Z, Lin Z. Preparation of Structure-Function Integrated Layered CNT/Mg Composites. Materials. 2024; 17(10):2191. https://doi.org/10.3390/ma17102191
Chicago/Turabian StyleDeng, Shiping, Linchi Zou, Zengxiang Liao, and Zhijie Lin. 2024. "Preparation of Structure-Function Integrated Layered CNT/Mg Composites" Materials 17, no. 10: 2191. https://doi.org/10.3390/ma17102191
APA StyleDeng, S., Zou, L., Liao, Z., & Lin, Z. (2024). Preparation of Structure-Function Integrated Layered CNT/Mg Composites. Materials, 17(10), 2191. https://doi.org/10.3390/ma17102191