The Waelz Slag from Electric Arc Furnace Dust Processing: Characterization and Magnetic Separation Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Waelz Slag and Its Products Characterization
2.2. Magnetic Separation
3. Results
3.1. Waelz Slag Characterization
3.1.1. Chemical Analysis
3.1.2. XRD Analysis
3.1.3. Thermal Analysis
3.1.4. Analysis of Iron Forms
3.1.5. Zinc and Copper Phase Analysis
3.1.6. Sieve Analysis
3.2. Magnetic Separation
3.2.1. WS1 Sample Separation
3.2.2. WS2 Sample Separation
4. Discussion
5. Conclusions
- Iron is mainly present in the samples as metallic Fe, Fe1−xO, Fe3−δO4 and FeOOH;
- Zinc was discovered in the form of oxide, silicates, sulfides and ferrite;
- Copper was detected only in metallic form associated with metallic iron.
- The concentrate with 73% Fe, 0.43% Zn and 1.15% Cu was obtained from the WS1 sample containing 24.4% Fe, 0.83% Zn and 0.61% Cu at grinding fineness of −0.054 mm (94.6%) and magnetic field strength of 1 kOe;
- The concentrate with 46.8% Fe, 1.58% Zn and 0.31% Cu was derived from the WS2 sample containing 30.3% Fe, 2.01% Zn and 0.21% Cu at grinding fineness of −0.054 mm and magnetic field strength of 2 kOe.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Khanmohammadi Hazaveh, P.; Karimi, S.; Rashchi, F.; Sheibani, S. Purification of the Leaching Solution of Recycling Zinc from the Hazardous Electric Arc Furnace Dust through an As-Bearing Jarosite. Ecotoxicol. Environ. Saf. 2020, 202, 110893. [Google Scholar] [CrossRef]
- Li, C.; Liu, W.; Jiao, F.; Yang, C.; Li, G.; Liu, S.; Qin, W. Separation and Recovery of Zinc, Lead and Iron from Electric Arc Furnace Dust by Low Temperature Smelting. Sep. Purif. Technol. 2023, 312, 123355. [Google Scholar] [CrossRef]
- Brandner, U.; Antrekowitsch, J.; Leuchtenmueller, M. A Review on the Fundamentals of Hydrogen-Based Reduction and Recycling Concepts for Electric Arc Furnace Dust Extended by a Novel Conceptualization. Int. J. Hydrogen Energy 2021, 46, 31894–31902. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, X.; Xu, C.; Han, Y. Hydrometallurgical Detoxification and Recycling of Electric Arc Furnace Dust. Int. J. Miner. Metall. Mater. 2023, 30, 2076–2094. [Google Scholar] [CrossRef]
- Antuñano, N.; Cambra, J.F.; Arias, P.L. Hydrometallurgical Processes for Waelz Oxide Valorisation—An Overview. Process Saf. Environ. Prot. 2019, 129, 308–320. [Google Scholar] [CrossRef]
- Tzouganatos, N.; Matter, R.; Wieckert, C.; Antrekowitsch, J.; Gamroth, M.; Steinfeld, A. Thermal Recycling of Waelz Oxide Using Concentrated Solar Energy. JOM 2013, 65, 1733–1743. [Google Scholar] [CrossRef]
- Xue, Y.; Hao, X.; Liu, X.; Zhang, N. Recovery of Zinc and Iron from Steel Mill Dust—An Overview of Available Technologies. Materials 2022, 15, 4127. [Google Scholar] [CrossRef] [PubMed]
- Antrekowitsch, J.; Rösler, G.; Steinacker, S. State of the Art in Steel Mill Dust Recycling. Chem. Ing. Tech. 2015, 87, 1498–1503. [Google Scholar] [CrossRef]
- Sar, S.; Ökvist, L.S.; Sparrman, T.; Engström, F.; Samuelsson, C. Characterization of Double Leached Waelz Oxide for Identification of Fluoride Mineral. Metals 2019, 9, 361. [Google Scholar] [CrossRef]
- Kaya, M. Galvanizing Residue and Electrical Arc Furnace (EAF) Dust. In Recycling Technologies for Secondary Zn-Pb Resources; Kaya, M., Ed.; Springer: Cham, Switzerland, 2023; pp. 71–150. [Google Scholar] [CrossRef]
- Colla, V.; Branca, T.A.; Pietruck, R.; Wölfelschneider, S.; Morillon, A.; Algermissen, D.; Rosendahl, S.; Granbom, H.; Martini, U.; Snaet, D. Future Research and Developments on Reuse and Recycling of Steelmaking By-Products. Metals 2023, 13, 676. [Google Scholar] [CrossRef]
- Zeng, T.; Deng, Z.; Zhang, F.; Fan, G.; Wei, C.; Li, X.; Li, M.; Liu, H. Removal of Arsenic from “Dirty Acid” Wastewater via Waelz Slag and the Recovery of Valuable Metals. Hydrometallurgy 2021, 200, 105562. [Google Scholar] [CrossRef]
- Abbà, A.; Sorlini, S.; Collivignarelli, M.C. Research Experiences on the Reuse of Industrial Waste for Concrete Production. MATEC Web Conf. 2017, 121, 10001. [Google Scholar] [CrossRef]
- Salas, I.; Cifrian, E.; Andres, A.; Viguri, J.R. Self-Organizing Maps to Assess the Recycling of Waste in Ceramic Construction Materials. Appl. Sci. 2021, 11, 10010. [Google Scholar] [CrossRef]
- Vegas, I.; Ibañez, J.A.; San José, J.T.; Urzelai, A. Construction Demolition Wastes, Waelz Slag and MSWI Bottom Ash: A Comparative Technical Analysis as Material for Road Construction. Waste Manag. 2008, 28, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Cappel, J.; Ahrenhold, F.; Egger, M.W.; Hiebler, H.; Schenk, J. 70 Years of LD-Steelmaking—Quo Vadis? Metals 2022, 12, 912. [Google Scholar] [CrossRef]
- Barna, R.; Bae, H.R.; Méhu, J.; Van der Sloot, H.; Moszkowicz, P.; Desnoyers, C. Assessment of Chemical Sensitivity of Waelz Slag. Waste Manag. 2000, 20, 115–124. [Google Scholar] [CrossRef]
- Mombelli, D.; Gruttadauria, A.; Barella, S.; Mapelli, C. The Influence of Slag Tapping Method on the Efficiency of Stabilization Treatment of Electric Arc Furnace Carbon Steel Slag (EAF-C). Minerals 2019, 9, 706. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, F.; Yu, Y.; Yang, S.; Liu, H.; Wang, H.; Hu, J. An environmentally benign process for effective recovery and solidification of Cr from stainless-steel slag. J. Clean. Prod. 2024, 450, 141898. [Google Scholar] [CrossRef]
- Kamimura, G.; Matsuura, H. Refining of Zinc Chloride by the Combination of Cementation Reaction and Vacuum Distillation. In PbZn 2020: 9th International Symposium on Lead and Zinc Processing; Siegmund, A., Alam, S., Grogan, J., Kerney, U., Shibata, E., Eds.; Springer: Cham, Switzerland, 2020; pp. 905–912. [Google Scholar] [CrossRef]
- Pichler, C.; Antrekowitsch, J. Pyrolysis Gas as a Renewable Reducing Agent for the Recycling of Zinc- and Lead-Bearing Residues: A Status Report. JOM 2017, 69, 999–1006. [Google Scholar] [CrossRef]
- Pichler, C.; Antrekowitsch, J. Recycling of Zinc- and Lead-Bearing Residues with Pyrolysis Gas. JOM 2015, 67, 2038–2046. [Google Scholar] [CrossRef]
- Han, Y.; Kim, S.; Han, S.; Kim, Y. The Optimal Physical Treatment Process for Production of High-Grade Iron Concentrate from Waelz Kiln Slag. Resour. Recycl. 2023, 32, 3–11. [Google Scholar] [CrossRef]
- ISO 2597-1:2006; ISO (International Organization for Standardization). Iron Ores—Determination of Total Iron Content. Part 1: Titrimetric Method after Tin(II) Chloride Reduction. ISO Copyright Office: Geneva, Switzerland, 2006.
- Hu, H.; Tang, Y.; Ying, H.; Wang, M.; Wan, P.; Jin Yang, X. The Effect of Copper on Iron Reduction and Its Application to the Determination of Total Iron Content in Iron and Copper Ores by Potassium Dichromate Titration. Talanta 2014, 125, 425–431. [Google Scholar] [CrossRef] [PubMed]
- GOST No 23581.3-79; Iron Ores, Concentrates, Agglomerates and Pellets. Method for the Determination of Divalent Iron Calculated as Ferrous Oxide. GOST (State Standard): Moscow, Russia, 1979.
- ISO 16878:2016; ISO (International Organization for Standardization). Iron Ores—Determination of Metallic Iron Content—Iron(III) Chloride Titrimetric Method. ISO Copyright Office: Geneva, Switzerland, 2016.
- Putz, H.; Brandenburg, K. Match!—Phase Identification from Powder Diffraction, Version 3.16, Crystal Impact, Bonn. Available online: https://www.crystalimpact.de/match (accessed on 26 January 2024).
- Vaitkus, A.; Merkys, A.; Grazulis, S. Validation of the Crystallography Open Database Using the Crystallographic Information Framework. J. Appl. Crystallogr. 2021, 54, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Filippova, N.A. The Phase Analysis of Ores and Their Processing Products, 2nd ed.; Himiya: Moscow, Russia, 1975. [Google Scholar]
- Grudinsky, P.; Pankratov, D.; Kovalev, D.; Grigoreva, D.; Dyubanov, V. Comprehensive Study on the Mechanism of Sulfating Roasting of Zinc Plant Residue with Iron Sulfates. Materials 2021, 14, 5020. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, T.; Zou, X.; Qing, C.; Frost, R.L. Thermal Treatment of Natural Goethite: Thermal Transformation and Physical Properties. Thermochim. Acta 2013, 568, 115–121. [Google Scholar] [CrossRef]
- Foldvari, M. Handbook of Thermogravimentric System of Minerals and Its Use in Geological Practice; Fancsik, T., Ed.; Geological Institute of Hungary: Budapest, Hungary, 2011; 180p. [Google Scholar]
- Lysenko, E.N.; Surzhikov, A.P.; Zhuravkov, S.P.; Vlasov, V.A.; Pustovalov, A.V.; Yavorovsky, N.A. The Oxidation Kinetics Study of Ultrafine Iron Powders by Thermogravimetric Analysis. J. Therm. Anal. Calorim. 2014, 115, 1447–1452. [Google Scholar] [CrossRef]
- Mombelli, D.; Barella, S.; Gruttadauria, A.; Mapelli, C. Iron Recovery from Bauxite Tailings Red Mud by Thermal Reduction with Blast Furnace Sludge. Appl. Sci. 2019, 9, 4902. [Google Scholar] [CrossRef]
- Ullrich, A.; Rölle, N.; Horn, S. From Wustite to Hematite: Thermal Transformation of Differently Sized Iron Oxide Nanoparticles in Air. J. Nanopart Res. 2019, 21, 168. [Google Scholar] [CrossRef]
- Sanders, J.P.; Gallagher, P.K. Kinetics of the Oxidation of Magnetite Using Simultaneous TG/DSC. J. Therm. Anal. Calorim. 2003, 72, 777–789. [Google Scholar] [CrossRef]
- Wei, R.; Cang, D.; Zhang, L.; Bai, Y. Staged Reaction Kinetics and Characteristics of Iron Oxide Direct Reduction by Carbon. Int. J. Miner. Metall. Mater. 2015, 22, 1025–1032. [Google Scholar] [CrossRef]
- Pankratov, D.A. Mössbauer Study of Oxo Derivatives of Iron in the Fe2O3-Na2O2 System. Inorg. Mater. 2014, 50, 82–89. [Google Scholar] [CrossRef]
- Jones, D.H.; Srivastava, K.K.P. Many-State Relaxation Model for the Mössbauer Spectra of Superparamagnets. Phys. Rev. B 1986, 34, 7542–7548. [Google Scholar] [CrossRef] [PubMed]
- Dzeranov, A.; Bondarenko, L.; Pankratov, D.; Dzhardimalieva, G.; Jorobekova, S.; Saman, D.; Kydralieva, K. Impact of Silica-Modification and Oxidation on the Crystal Structure of Magnetite Nanoparticles. Magnetochemistry 2023, 9, 18. [Google Scholar] [CrossRef]
- Pankratov, D.A.; Anuchina, M.M.; Spiridonov, F.M.; Krivtsov, G.G. Fe3–δO4 Nanoparticles Synthesized in the Presence of Natural Polyelectrolytes. Crystallogr. Rep. 2020, 65, 393–397. [Google Scholar] [CrossRef]
- Bondarenko, L.S.; Pankratov, D.A.; Dzeranov, A.A.; Dzhardimalieva, G.I.; Streltsova, A.N.; Zarrelli, M.; Kydralieva, K.A. A Simple Method for Quantification of Nonstoichiometric Magnetite Nanoparticles Using Conventional X-Ray Diffraction Technique. Mendeleev Commun. 2022, 32, 642–644. [Google Scholar] [CrossRef]
- Bondarenko, L.; Baimuratova, R.; Reindl, M.; Zach, V.; Dzeranov, A.; Pankratov, D.; Kydralieva, K.; Dzhardimalieva, G.; Kolb, D.; Wagner, F.E.; et al. Dramatic Change in the Properties of Magnetite-Modified MOF Particles Depending on the Synthesis Approach. Heliyon 2024, 10, e27640. [Google Scholar] [CrossRef] [PubMed]
- Kicheeva, A.G.; Sushko, E.S.; Bondarenko, L.S.; Kydralieva, K.A.; Pankratov, D.A.; Tropskaya, N.S.; Dzeranov, A.A.; Dzhardimalieva, G.I.; Zarrelli, M.; Kudryasheva, N.S. Functionalized Magnetite Nanoparticles: Characterization, Bioeffects, and Role of Reactive Oxygen Species in Unicellular and Enzymatic Systems. Int. J. Mol. Sci. 2023, 24, 1133. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.L.; Nie, X.F.; Luo, H.L. Studies on the Magnetic Viscosity and the Magnetic Anisotropy of γ-Fe2O3 Powders. Appl. Phys. A Mater. Sci. Process 1998, 66, 109–114. [Google Scholar] [CrossRef]
- Wu, W.; Xiao, X.H.; Zhang, S.F.; Peng, T.C.; Zhou, J.; Ren, F.; Jiang, C.Z. Synthesis and Magnetic Properties of Maghemite (γ-Fe2O3) Short-Nanotubes. Nanoscale Res. Lett. 2010, 5, 1474–1479. [Google Scholar] [CrossRef]
- Adolphi, N.L.; Huber, D.L.; Bryant, H.C.; Monson, T.C.; Fegan, D.L.; Lim, J.; Trujillo, J.E.; Tessier, T.E.; Lovato, D.M.; Butler, K.S.; et al. Characterization of Single-Core Magnetite Nanoparticles for Magnetic Imaging by SQUID Relaxometry. Phys. Med. Biol. 2010, 55, 5985–6003. [Google Scholar] [CrossRef]
- Nadeem, K.; Krenn, H.; Traussnig, T.; Würschum, R.; Szabó, D.V.; Letofsky-Papst, I. Effect of Dipolar and Exchange Interactions on Magnetic Blocking of Maghemite Nanoparticles. J. Magn. Magn. Mater. 2011, 323, 1998–2004. [Google Scholar] [CrossRef]
- Shoppert, A.; Valeev, D.; Loginova, I.; Pankratov, D. Low-Temperature Treatment of Boehmitic Bauxite Using the Bayer Reductive Method with the Formation of High-Iron Magnetite Concentrate. Materials 2023, 16, 4678. [Google Scholar] [CrossRef] [PubMed]
- Grudinsky, P.; Zinoveev, D.; Pankratov, D.; Semenov, A.; Panova, M.; Kondratiev, A.; Zakunov, A.; Dyubanov, V.; Petelin, A. Influence of Sodium Sulfate Addition on Iron Grain Growth during Carbothermic Roasting of Red Mud Samples with Different Basicity. Metals 2020, 10, 1571. [Google Scholar] [CrossRef]
- Sauer, W.E.; Reynik, R.J. Electronic and Magnetic Structure of Dilute Iron-Base Alloys. J. Appl. Phys. 1971, 42, 1604–1605. [Google Scholar] [CrossRef]
- Eryomina, M.A.; Lomayeva, S.F.; Ul’yanov, A.L.; Yelsukov, E.P. Structural and Phase Transformations during Copper and Iron Mechanical Alloying in Liquid Medium Studied by Mössbauer Spectroscopy. Met. Mater. Int. 2016, 22, 163–170. [Google Scholar] [CrossRef]
- Shafranovsky, E.A.; Petrov, Y.I.; Casas, L.; Molins, E. Structural and Mössbauer Studies of Aerosol FeCu Nanoparticles in a Wide Composition Range. J. Nanopart. Res. 2011, 13, 4913–4928. [Google Scholar] [CrossRef]
- Al-Omari, I.A. Mössbauer Studies of the Mechanically Alloyed Cu–30 at.% Fe. Phys. Status Solidi C 2004, 1, 1805–1808. [Google Scholar] [CrossRef]
- Morris, R.V.; Lauer, H.V.; Lawson, C.A.; Gibson, E.K.; Nace, G.A.; Stewart, C. Spectral and Other Physicochemical Properties of Submicron Powders of Hematite (α-Fe2O3), Maghemite (γ-Fe2O3), Magnetite (Fe3O4), Goethite (α-FeOOH), and Lepidocrocite (γ-FeOOH). J. Geophys. Res. Solid Earth 1985, 90, 3126–3144. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, E.J.; Larese-Casanova, P.; Scherer, M.; Cook, R. Green Rust Formation from the Bioreduction of γ–FeOOH (Lepidocrocite): Comparison of Several Shewanella Species. Geomicrobiol. J. 2007, 24, 211–230. [Google Scholar] [CrossRef]
- McCammon, C.A.; Price, D.C. Mössbauer Spectra of FeXO (X > 0.95). Phys. Chem. Miner. 1985, 11, 250–254. [Google Scholar] [CrossRef]
- Mozaffari, M.; Gheisari, M.; Niyaifar, M.; Amighian, J. Magnetic Properties of Mechanochemically Prepared Iron–Wüstite (Fe–FeyO) Nanocomposites. J. Magn. Magn. Mater. 2009, 321, 2981–2984. [Google Scholar] [CrossRef]
- Schrettle, F.; Kant, C.; Lunkenheimer, P.; Mayr, F.; Deisenhofer, J.; Loidl, A. Wüstite: Electric, Thermodynamic and Optical Properties of FeO. Eur. Phys. J. B 2012, 85, 164. [Google Scholar] [CrossRef]
- Todd, S.S.; Bonnickson, K.R. Low Temperature Heat Capacities and Entropies at 298.16°K of Ferrous Oxide, Manganous Oxide and Vanadium Monoxide. J. Am. Chem. Soc. 1951, 73, 3894–3895. [Google Scholar] [CrossRef]
- McCammon, C.A. Magnetic Properties of FexO (x > 0.95): Variation of Néel Temperature. J. Magn. Magn. Mater. 1992, 104–107, 1937–1938. [Google Scholar] [CrossRef]
- Valeev, D.; Pankratov, D.; Shoppert, A.; Sokolov, A.; Kasikov, A.; Mikhailova, A.; Salazar-Concha, C.; Rodionov, I. Mechanism and Kinetics of Iron Extraction from High Silica Boehmite–Kaolinite Bauxite by Hydrochloric Acid Leaching. Trans. Nonferrous Met. Soc. China 2021, 31, 3128–3149. [Google Scholar] [CrossRef]
- Shoppert, A.; Valeev, D.; Diallo, M.M.; Loginova, I.; Beavogui, M.C.; Rakhmonov, A.; Ovchenkov, Y.; Pankratov, D. High-Iron Bauxite Residue (Red Mud) Valorization Using Hydrochemical Conversion of Goethite to Magnetite. Materials 2022, 15, 8423. [Google Scholar] [CrossRef] [PubMed]
- Scrimshire, A.; Lobera, A.L.; Kultyshev, R.; Ellis, P.; Forder, S.D.; Bingham, P.A. Variable Temperature 57Fe-Mössbauer Spectroscopy Study of Nanoparticle Iron Carbides. Croat. Chem. Acta 2015, 88, 531–537. [Google Scholar] [CrossRef]
- Klygach, D.S.; Vakhitov, M.G.; Pankratov, D.A.; Zherebtsov, D.A.; Tolstoguzov, D.S.; Raddaoui, Z.; El Kossi, S.; Dhahri, J.; Vinnik, D.A.; Trukhanov, A.V. MCC: Specific of Preparation, Correlation of the Phase Composition and Electrodynamic Properties. J. Magn. Magn. Mater. 2021, 526, 167694. [Google Scholar] [CrossRef]
- Onuk, P.; Melcher, F. Mineralogical and Chemical Quantification of Waelz Slag. Int. J. Miner. Process. Extr. Metall. 2022, 7, 50–60. [Google Scholar] [CrossRef]
- Dhana Raju, R. Placer Magnetite-Sand and By-Product Iron, Generated during the Beneficiation of Mineral Sand Ilmenite to High-Titanium Products, as Potential Alternatives to the High-Grade Fe-Ore for Steel Making. J. Geol. Soc. India 2022, 98, 165–168. [Google Scholar] [CrossRef]
- Panshin, A.M.; Leontyev, L.I.; Kozlov, P.A.; Dyubanov, V.G.; Zatonsky, A.V.; Ivakin, D.A. Reprocessing Technology of Electric Arc Furnace Dust Join Stock Company “Severstal” in Waelz Treating of Complex Join Stock Company “Chelyabinsk Zink Plant”. Ecol. Ind. Russ. 2012, 4–6. [Google Scholar] [CrossRef]
- Kozlov, P.A.; Zatonskiy, A.V.; Reshetnikov, Y.V.; Gizatulin, O.V.; Ivakin, D.A. Development of Waelz-Process of Zinc Agglomerated Cakes in Large Waelz-Furnace. Tsvetn. Met. 2010, 5, 41–45. [Google Scholar]
- Vyatkin, V.N.; Shumilin, Y.P.; Bovykin, K.V. Waelz Process Adopted by Chelyabinsk Zinc Plant to Process Copper Plant Dusts. Tsvetnye Met. 2020, 37–42. [Google Scholar] [CrossRef]
- Li, N.; He, Y.; Yi, Z.; Gao, L.; Zhai, F.; Chattopadhyay, K. Multiple-Metal-Doped Fe3O4@Fe2O3 Nanoparticles with Enhanced Photocatalytic Performance for Methyl Orange Degradation under UV/Solar Light Irradiation. Ceram. Int. 2020, 46, 19038–19045. [Google Scholar] [CrossRef]
- Grudinsky, P.; Zinoveev, D.; Kondratiev, A.; Delitsyn, L.; Kulumbegov, R.; Lysenkov, A.; Kozlov, P.; Dyubanov, V. Reduction Smelting of the Waelz Slag from Electric Arc Furnace Dust Processing: An Experimental Study. Crystals 2023, 13, 318. [Google Scholar] [CrossRef]
- Zinoveev, D.; Pasechnik, L.; Grudinsky, P.; Yurtaeva, A.; Dyubanov, V. Kinetics and Mechanism of Red Mud Carbothermic Reduction and Reduced Iron Grain Growth: An Influence of Sodium Sulfate. Crystals 2022, 13, 1. [Google Scholar] [CrossRef]
- Antunes, R.A.; Costa, I.; Lúcia, D.; De Faria, A. Characterization of Corrosion Products Formed on Steels in the First Months of Atmospheric Exposure. Mat. Res. 2003, 6, 403–408. [Google Scholar] [CrossRef]
- Cook, D.C.; Oh, S.J.; Balasubramanian, R.; Yamashita, M. The Role of Goethite in the Formation of the Protective Corrosion Layer on Steels. Hyperfine Interact. 1999, 122, 59–70. [Google Scholar] [CrossRef]
- Pankratov, D.A.; Dovletyarova, E.A.; Zhikharev, A.P.; Gusev, A.; Yáñez, C.; Neaman, A. Deciphering the Corrosion Puzzle: Nano-Iron-Biochar Composite—Not a Quick Fix for Metal Immobilization in Peat Soils. Appl. Geochem. 2024, 166, 105982. [Google Scholar] [CrossRef]
- Colussi, I.; Meriani, S. Beneficiation of a Zinc-Oxide Rich Phase by Leaching Re-Fired Imperial Smelting Process Slags. Int. J. Miner. Process. 1980, 7, 43–55. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Sole, K.C.; Davenport, W.G.; Alvear Flores, G.R.F. Hydrometallurgical Copper Extraction: Introduction and Leaching. In Extractive Metallurgy of Copper; Elsevier: Amsterdam, The Netherlands, 2022; pp. 361–406. [Google Scholar] [CrossRef]
- Antrekowitsch, J.; Steinlechner, S.; Unger, A.; Rösler, G.; Pichler, C.; Rumpold, R. Zinc and Residue Recycling. In Handbook of Recycling. State-of-the-Art for Practitioners, Analysts, and Scientists; Worrel, E., Reuter, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 113–124. [Google Scholar]
Sample | Fe | Zn | Cu | Ca | Si | Al | Mn | Cr | Na | K | Ti | P | Ni | Pb | As | Sb | V | S | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WS1 | 24.4 | 0.83 | 0.61 | 9.92 | 5.61 | 1.75 | 2.25 | 0.32 | 0.49 | 0.27 | 0.140 | 0.17 | 0.046 | 0.27 | 0.22 | 0.041 | 0.010 | 1.84 | 19.1 |
WS2 | 30.3 | 2.01 | 0.21 | 20.0 | 4.70 | 1.08 | 2.87 | 0.31 | 0.98 | 0.38 | 0.084 | 0.18 | 0.025 | 0.38 | 0.003 | 0.059 | 0.015 | 1.39 | 5.1 |
T 2 | No. | WS1 Sample | WS2 Sample | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phase | δ | ε {Δ = 2ε} | Гexp | Heff | S | Phase | δ | ε {Δ = 2ε} | Гexp | Heff | S | ||
K | mm/s | mm/s | mm/s | kOe | % | mm/s | mm/s | mm/s | kOe | % | |||
296 | 1 | γ-Fe2O3 | 0.29(2) | −0.02(2) | 0.37(6) | 489(2) | 4.8(5) | Fe2.824O4 | 0.28(1) | −0.03(1) | 0.23(3) | 494(1) | 12(1) |
2 | 0.79(3) | −0.03(3) | 0.35(9) | 471(2) | 7(1) | ||||||||
3 | α-Fe | 0.02(1) | −0.01(1) | 0.38(1) | 328.8(2) | 23.7(7) | α-Fe | 0.00(1) | 0.00(1) | 0.28(1) | 329.4(1) | 29.0(4) | |
4 | α-FeOOH | 0.31(5) | −0.12(4) | 4.1(3) | 235(6) | 36(2) | |||||||
5 | Fe2+Td | 0.86(2) | {1.08(2)} | 0.88(6) | 11.0(9) | Fe2+Oh | 1.04(1) | {1.21(1)} | 0.82(1) | 40.3(6) | |||
6 | Fe3+Oh | 0.33(1) | {0.74(1)} | 0.51(1) | 24.2(6) | Fe3+Oh | 0.32(1) | {0.62(1)} | 0.46(2) | 11.4(3) | |||
78 | 1 | γ-Fe2O3 | 0.45(1) | 0.00(1) | 0.28(1) | 522(3) | 7(1) | Fe2.824O4 | 0.41(1) | −0.05(1) | 0.40(2) | 515.2(8) | 12.9(5) |
2 | 1.12(2) | −0.05(1) | 0.31(5) | 494(1) | 3.7(4) | ||||||||
3 | α-FeOOH | 0.49(1) | −0.13(1) | 0.41(3) | 493.2(3) | 13(2) | |||||||
4 | 0.54(1) | −0.13(1) | 1.08(5) | 476(2) | 20(2) | ||||||||
5 | α-Fe | 0.12(1) | 0.00(1) | 0.30(1) | 338.9(1) | 13.5(6) | α-Fe | 0.11(1) | 0.00(1) | 0.28(1) | 337.1(1) | 25.4(4) | |
6 | Fe alloy | 0.13(2) | 0.00(1) | 1.6(1) | 324(2) | 21(1) | |||||||
7 | Θ-Fe3C | 0.39(2) | 0.20(1) | 0.54(4) | 223(1) | 4.3(4) | Fe1−xO | 0.93(4) | −0.04(1) | 3.0(2) | 302(3) | 31(2) | |
8 | Fe2+Oh | 1.31(1) | −0.04(1) | 0.36(2) | 120.9(5) | 4.6(2) | Fe1−xO | 1.24(4) | 0.45(6) | 1.4(1) | 156(3) | 10(1) | |
9 | Fe2+Td | 1.01(1) | {1.67(1)} | 0.21(2) | 1.4(1) | Fe1−xO | 1.18(1) | −0.04(1) | 0.46(2) | 78.0(4) | 13.8(4) | ||
10 | Fe3+Oh | 0.42(1) | {0.86(1)} | 0.60(1) | 16.3(2) | Fe3+Oh | 0.46(1) | {0.70(1)} | 0.30(2) | 2.9(2) |
No. | Area | Composition, wt.% | ||
---|---|---|---|---|
Fe | Cr | Cu | ||
1 | Metallic iron | 98.12 | 0.61 | 1.17 |
2 | Metallic iron | 99.20 | - | 0.80 |
Fraction, mm | WS1 Sample | WS2 Sample | ||||||
---|---|---|---|---|---|---|---|---|
Yield, % | Content, wt.% | Yield, % | Content, wt.% | |||||
Fe | Zn | Cu | Fe | Zn | Cu | |||
+10 | 12.04 | 31.34 | 0.41 | 0.56 | 9.27 | 30.4 | 3.05 | 0.19 |
−10 + 7 | 9.71 | 27.04 | 0.68 | 0.71 | 8.10 | 30 | 4.80 | 0.19 |
−7 + 2.5 | 29.77 | 24.19 | 0.43 | 0.71 | 22.11 | 31.7 | 2.39 | 0.2 |
−2.5 + 1.6 | 13.55 | 23.86 | 0.43 | 0.77 | 12.81 | 32.3 | 1.61 | 0.2 |
−1.6 + 1 | 15.39 | 24.22 | 0.51 | 0.77 | 18.38 | 31.9 | 1.62 | 0.19 |
−1 + 0.4 | 12.59 | 24.77 | 0.61 | 0.81 | 18.57 | 30.6 | 1.79 | 0.19 |
−0.4 + 0.2 | 3.28 | 20.91 | 1.06 | 0.80 | 6.61 | 30 | 1.9 | 0.2 |
−0.2 + 0.1 | 2.15 | 18.46 | 2.33 | 0.77 | 2.42 | 29.5 | 2.31 | 0.22 |
−0.1 | 1.53 | 15.93 | 4.8 | 0.80 | 1.74 | 26 | 3.16 | 0.3 |
Total | 100 | 25.0 | 0.61 | 0.73 | 100 | 31.1 | 2.27 | 0.20 |
Element | Fe | Cu | Zn | Pb | Cr | Mn | Ni | P | As | Sb |
---|---|---|---|---|---|---|---|---|---|---|
Content, wt.% | 73.0 | 1.15 | 0.43 | 0.12 | 0.42 | 0.87 | 0.16 | 0.21 | 0.64 | 0.13 |
Recovery degree, % | 54.8 | 34.6 | 9.5 | 8.3 | 24.1 | 7.1 | 61.7 | 22.7 | 53.4 | 59.3 |
Element | Fe | Cu | Zn | Pb | Cr | Mn | Ni | P | As | Sb |
---|---|---|---|---|---|---|---|---|---|---|
Content, wt.% | 46.8 | 0.31 | 1.57 | 0.087 | 0.21 | 1.59 | 0.057 | 0.08 | 0.015 | 0.037 |
Recovery degree, % | 52.9 | 49.3 | 26.8 | 7.8 | 23.5 | 19 | 77.5 | 15.2 | 100 | 21.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grudinsky, P.; Yurtaeva, A.; Pankratov, D.; Pasechnik, L.; Musaelyan, R.; Dyubanov, V. The Waelz Slag from Electric Arc Furnace Dust Processing: Characterization and Magnetic Separation Studies. Materials 2024, 17, 2224. https://doi.org/10.3390/ma17102224
Grudinsky P, Yurtaeva A, Pankratov D, Pasechnik L, Musaelyan R, Dyubanov V. The Waelz Slag from Electric Arc Furnace Dust Processing: Characterization and Magnetic Separation Studies. Materials. 2024; 17(10):2224. https://doi.org/10.3390/ma17102224
Chicago/Turabian StyleGrudinsky, Pavel, Anfisa Yurtaeva, Denis Pankratov, Liliya Pasechnik, Roman Musaelyan, and Valery Dyubanov. 2024. "The Waelz Slag from Electric Arc Furnace Dust Processing: Characterization and Magnetic Separation Studies" Materials 17, no. 10: 2224. https://doi.org/10.3390/ma17102224
APA StyleGrudinsky, P., Yurtaeva, A., Pankratov, D., Pasechnik, L., Musaelyan, R., & Dyubanov, V. (2024). The Waelz Slag from Electric Arc Furnace Dust Processing: Characterization and Magnetic Separation Studies. Materials, 17(10), 2224. https://doi.org/10.3390/ma17102224