Engineered Cementitious Composites with Super-Sulfated Cement: Mechanical, Physical, and Durability Performance
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials
2.2. ECC Compositions and Specimen Preparation
2.3. Testing Methods
3. Results
3.1. Compressive Strength
3.2. Flexural Strength
3.3. Ultrasound Pulse Velocity
3.4. Chloride Penetrability
3.5. Drying Shrinkage of SSC-Based ECCs
3.6. SEM/EDX Analysis
3.7. XRD Analysis
4. Conclusions
- -
- All SSC-based ECCs demonstrated lower compressive and flexural strengths, as well as UPV results compared to the control ECC-CTL mixture. However, except for ECC-SSC-1.5F, which presented a lower strength than 30 MPa at 28 days, all the other SSC-based ECCs satisfied the requirement of most engineering applications, especially at FA/SSC ratios of 0 and 0.8.
- -
- Different to ECC-SSC-0F, which demonstrated the lowest deformation amongst other ECCs, the deformation values of the FA-based SSC-ECCs highly improved to reach between 11.6% and 83.7% higher values than the ECC-CTL at 28 days.
- -
- Negligible chloride ion permeability with extremely low RCPTs were found for all SSC-ECCs, especially at 0% FA.
- -
- The use of SSC by OPC replacement caused the drying shrinkage to enhance dramatically, particularly at advanced curing ages. However, the inclusion of higher FA/SSC ratios at 1.2 and 1.5 resulted in important reductions in the shrinkage of ECC-CTL.
- -
- The SEM analysis revealed that ECC-SSC-0F exhibited a dense and homogeneous matrix, while ECC-SSC-1.2F displayed a higher prevalence of ettringite structures due to the integration of FA with high aluminum content. The EDX data confirmed the presence of calcium–aluminum–silicate compounds in both mixtures, with ECC-SSC-1.2F having a higher concentration of silicon and a predominance of C-S-H and C-A-S-H hydration products.
- -
- The XRD patterns confirmed the influence of FAs on the formation of ettringite phases in FA-based SSC-ECCs. However, the enhanced intensity of the silica peak supported the higher formation of C-S-H/C-A-S-H within the system.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hooshmand, A.; Kianoush, R.; Siad, H.; Lachemi, M.; Moslemi, M. Investigation of leakage and self-healing of direct tension cracks under sustained loading and high-water pressure. Constr. Build. Mater. 2021, 267, 120879. [Google Scholar] [CrossRef]
- Siad, H.; Alyousif, A.; Keskin, O.K.; Keskin, S.B.; Lachemi, M.; Sahmaran, M.; Hossain, K.M.A. Influence of limestone powder on mechanical, physical and self-healing behavior of Engineered Cementitious Composites. Constr. Build. Mater. 2015, 99, 1–10. [Google Scholar] [CrossRef]
- Siad, H.; Lachemi, M.; Sahmaran, M.; Hossain, K.A. Potential for using waste recycled glass in engineered cementitious composites. Spec. Publ. 2017, 320, 34.1–34.14. [Google Scholar]
- Liu, Y.; Zhou, X.; Lv, C.; Yang, Y.; Liu, T. Use of silica fume and GGBS to improve frost resistance of ECC with high-volume fly ash. Adv. Civ. Eng. 2018, 2018, 7987589. [Google Scholar] [CrossRef]
- Mahmoodi, O.; Siad, H.; Lachemi, M.; Şahmaran, M. Comparative life cycle assessment analysis of mono, binary and ternary construction and demolition wastes-based geopolymer binders. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Dadsetan, S.; Siad, H.; Lachemi, M.; Mahmoodi, O.; Sahmaran, M. The effect OF chemical factors and glass powder ON the rheological properties of metakaolin based geopolymer pastes. In Proceedings of the CSCE Annual Conference, Montreal, QC, Canada, 12–15 June 2019; pp. 1–11. [Google Scholar]
- Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Cabrera-Luna, K.; Maldonado-Bandala, E.E.; Nieves-Mendoza, D.; Castro-Borges, P.; García, J.E. Novel low emissions supersulfated cements of pumice in concrete; mechanical and electrochemical characterization. J. Clean. Prod. 2020, 272, 122520. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; Mejía-Arcila, J.; de Gutiérrez, R.M.; Martínez, E. Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Constr. Build. Mater. 2018, 176, 103–111. [Google Scholar] [CrossRef]
- Lam, N.N. A study on super-sulfated cement using Dinh Vu phosphogypsum. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 143, p. 012016. [Google Scholar]
- Wu, Q.; Xue, Q.; Yu, Z. Research status of super sulfate cement. J. Clean. Prod. 2021, 294, 126228. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Rose, V.; De Gutierrez, R.M. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 2011, 33, 46–54. [Google Scholar] [CrossRef]
- Bazaldúa-Medellín, M.E.; Fuentes, A.F.; Gorokhovsky, A.; Escalante-García, J.I. Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum. Mater. Construcción 2015, 65, 3. [Google Scholar]
- Masoudi, R.; Hooton, R. Examining the hydration mechanism of super-sulfated cements made with high and low-alumina slags. Cem. Concr. Compos. 2019, 103, 193–203. [Google Scholar] [CrossRef]
- Rubert, S.; Luz, C.A.; Varela, M.V.; Filho, J.I.; Hooton, R.D. Hydration mechanisms of supersulfated cement. J. Therm. Anal. Calorim. 2018, 134, 971–980. [Google Scholar] [CrossRef]
- Guo, Y.P.; Wang, H.B.; Niu, Q.L. Composition, preparation, and properties of supersulfate cement. Eng. Qual. 2016, 34, 66–68. [Google Scholar]
- Gruskovnjak, A.; Lothenbach, B.; Winnefeld, F.; Münch, B.; Figi, R.; Ko, S.C.; Adler, M.; Mäder, U. Quantification of hydration phases in supersulfated cements: Review and new approaches. Adv. Cem. Res. 2011, 23, 265–275. [Google Scholar] [CrossRef]
- Masoudi, R. Examining Compositions, Hydration Mechanisms and Properties of Supersulfated Cement for Use in Concrete. Doctoral Dissertation, University of Toronto, Toronto, ON, Canada, 2018. [Google Scholar]
- Zhou, Y.; Peng, Z.; Chen, L.; Huang, J.; Ma, T. The influence of two types of alkali activators on the microstructure and performance of supersulfated cement concrete: Mitigating the strength and carbonation resistance. Cem. Concr. Compos. 2021, 118, 103947. [Google Scholar] [CrossRef]
- Da Luz, C.A.; Hooton, R.D. Influence of curing temperature on the process of hydration of supersulfated cements at early age. Cem. Concr. Res. 2015, 77, 69–75. [Google Scholar] [CrossRef]
- Nguyen, H.A.; Chang, T.P.; Shih, J.Y.; Chen, C.T. Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cem. Concr. Compos. 2019, 99, 40–48. [Google Scholar] [CrossRef]
- Feng, Z.; Shen, D.; Huang, Q.; Zhang, T. Effect of fly ash on early-age properties and viscoelastic behaviors of supersulfated cement concrete under different degrees of restraint. Constr. Build. Mater. 2023, 401, 132895. [Google Scholar] [CrossRef]
- ASTM C989/989M; Standard Specification for Slag Cement for Use in Concrete and Mortars. ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM C230; Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2002.
- Provis, J.L.; Duxson, P.; van Deventer, J.S. The role of particle technology in developing sustainable construction materials. Adv. Powder Technol. 2010, 21, 2–7. [Google Scholar] [CrossRef]
- Mahmoodi, O.; Siad, H.; Lachemi, M.; Dadsetan, S.; Şahmaran, M. Extensive rheological evaluation of geopolymer mortars incorporating maximum amounts of recycled concrete as precursors and aggregates. Constr. Build. Mater. 2023, 390, 131801. [Google Scholar] [CrossRef]
- ASTM C39; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM C1399/C1399M-10; Standard Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced Concrete. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C597-16; Standard Test Method for Pulse Velocity through Concrete. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM C1202; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM C596; Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2018.
- Zhu, Y.; Yang, Y.; Yao, Y. Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash. Constr. Build. Mater. 2012, 36, 1076–1081. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, J.; Qi, Q.; Li, H.; Zhang, N.; Mu, R. Influence of fly ash on mechanical properties and hydration of calcium sulfoaluminate-activated supersulfated cement. Materials 2020, 13, 2514. [Google Scholar] [CrossRef] [PubMed]
- Booya, E.; Gorospe, K.; Das, S.; Loh, P. The influence of utilizing slag in lieu of fly ash on the performance of engineered cementitious composites. Constr. Build. Mater. 2020, 256, 119412. [Google Scholar] [CrossRef]
- Siad, H.; Lachemi, M.; Sahmaran, M.; Mesbah, H.A.; Hossain, K.M.A. Use of recycled glass powder to improve the performance properties of high-volume fly ash-engineered cementitious composites. Constr. Build. Mater. 2018, 163, 53–62. [Google Scholar] [CrossRef]
- Hooshmand, A.; Kianoush, R.; Siad, H.; Lachemi, M.; Booya, E.; Moslemi, M. Volumetric strain behaviour and self-healing of large scale engineered cementitious composite and normal concrete panels under natural conditions. Constr. Build. Mater. 2021, 308, 125078. [Google Scholar] [CrossRef]
- Sherir, M.A.; Hossain, K.M.; Lachemi, M. Structural performance of polymer fiber reinforced engineered cementitious composites subjected to static and fatigue flexural loading. Polymers 2015, 7, 1299–1330. [Google Scholar] [CrossRef]
- Siad, H. Influence of the Type of Mineral Addition on the Physico-Mechanical Behavior and Durability of Self-Compacting Concretes. Doctoral Dissertation, INSA, Rennes, France, 2010. [Google Scholar]
- Nguyen, K.S.; Nguyen-Phung, A.T.; Le, H.T.; Ho, T.T.; Nguyen-Ngoc, T.H.; Yap, S.P.; Chijiwa, N.; Otsuki, N. Chloride binding ability and anti-corrosion properties of supersulfated cement in seawater/sand mixing concrete. In Congrès International de Géotechnique–Ouvrages–Structures; Springer: Singapore, 2017; pp. 367–376. [Google Scholar]
- Liu, J.; Liu, J.; Huang, Z.; Zhu, J.; Liu, W.; Zhang, W. Effect of fly ash as cement replacement on chloride diffusion, chloride binding capacity, and micro-properties of concrete in a water soaking environment. Appl. Sci. 2020, 10, 6271. [Google Scholar] [CrossRef]
- Thomas MD, A.; Hooton, R.D.; Scott, A.; Zibara, H. The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cem. Concr. Res. 2012, 42, 1–7. [Google Scholar] [CrossRef]
- Şahmaran, M.; Yaman, İ.Ö.; Tokyay, M. Transport and mechanical properties of self consolidating concrete with high volume fly ash. Cem. Concr. Compos. 2009, 31, 99–106. [Google Scholar] [CrossRef]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete, 2nd ed.; Prentice Hall, Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Nguyen, H.A.; Chang, T.P.; Chen, C.T.; Huang, T.Y. Engineering and creep performances of green super-sulfated cement concretes using circulating fluidized bed combustion fly ash. Constr. Build. Mater. 2022, 346, 128274. [Google Scholar] [CrossRef]
Chemical Arrangement (%) | OPC | Slag | FA |
---|---|---|---|
Si | 19.5 | 36.8 | 57 |
Al | 5.1 | 8.7 | 21 |
Fe | 2.9 | 0.6 | 4.2 |
Mg | 2.5 | 11.0 | 1.8 |
Ca | 61.8 | 38.1 | 9.8 |
Na | 0.3 | 0.2 | 2.2 |
K | 1.1 | 0.3 | 1.5 |
Loss on Ignition | 2.5 | 1.1 | 1.3 |
SiO2 + Al2O2 + Fe2O3 | 27.5 | 46.1 | 82.2 |
Specific Gravity | 3.15 | 3.1 | 2.38 |
Mix ID | OPC (%) | Slag (%) | Gypsum (%) | Water to OPC | Sand to OPC | 3-Day Compressive Strength (MPa) | 7-Day Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|
1 | 1 | - | - | 0.5 | 3 | 28.4 | 34.1 |
2 | 0.1 | 0.85 | 0.05 | 0.5 | 3 | 15.8 | 30.7 |
3 | 0.1 | 0.8 | 0.1 | 0.5 | 3 | 12.3 | 24.7 |
4 | 0.01 | 0.89 | 0.1 | 0.5 | 3 | 10.2 | 21.0 |
Mixture ID | OPC | Slag | Gypsum | FA | Sand | Water | Fiber | HRWRA |
---|---|---|---|---|---|---|---|---|
ECC-CTL | 572 | - | - | 686 | 453 | 340 | 26 | 6 |
ECC-SSC-0F | 130 | 1101 | 65 | - | 466 | 350 | 26 | 7 |
ECC-SSC-0.8F | 69 | 586 | 34 | 552 | 447 | 335 | 26 | 6.5 |
ECC-SSC-1.2F | 55.9 | 475 | 28 | 671 | 443 | 332 | 26 | 6 |
ECC-SSC-1.5F | 49.1 | 417 | 24 | 735 | 441 | 331 | 26 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zokaei, S.; Siad, H.; Lachemi, M.; Mahmoodi, O.; Ozcelikci, E.; Şahmaran, M. Engineered Cementitious Composites with Super-Sulfated Cement: Mechanical, Physical, and Durability Performance. Materials 2024, 17, 2240. https://doi.org/10.3390/ma17102240
Zokaei S, Siad H, Lachemi M, Mahmoodi O, Ozcelikci E, Şahmaran M. Engineered Cementitious Composites with Super-Sulfated Cement: Mechanical, Physical, and Durability Performance. Materials. 2024; 17(10):2240. https://doi.org/10.3390/ma17102240
Chicago/Turabian StyleZokaei, Shahin, Hocine Siad, Mohamed Lachemi, Obaid Mahmoodi, Emircan Ozcelikci, and Mustafa Şahmaran. 2024. "Engineered Cementitious Composites with Super-Sulfated Cement: Mechanical, Physical, and Durability Performance" Materials 17, no. 10: 2240. https://doi.org/10.3390/ma17102240
APA StyleZokaei, S., Siad, H., Lachemi, M., Mahmoodi, O., Ozcelikci, E., & Şahmaran, M. (2024). Engineered Cementitious Composites with Super-Sulfated Cement: Mechanical, Physical, and Durability Performance. Materials, 17(10), 2240. https://doi.org/10.3390/ma17102240