Investigating the Influence of Varied Particle Sizes on the Load-Bearing Properties of Arrester Bed Aggregates
Abstract
:1. Introduction
2. Construction of Pebble Discrete Element Models
2.1. DEM Shape Construction Method for Irregularly Shaped Pebbles
2.2. Calibration of the Parameters for Pebble Discrete Element Models
3. Discrete Element Analysis of Mechanical Interactions among Pebble Aggregates
3.1. Macroscopic Analysis
3.2. Microscopic Analysis
- (1)
- Motion of pebble particles
- (2)
- Evolutionary patterns of force chains
- (3)
- Distribution of contact forces
- (4)
- Orientation of contact forces
3.3. Integrated Macroscopic and Microscopic Analyses
4. Influence of Particle Size on the Load-Bearing Capacity of Pebble Aggregates
4.1. Pressure–Strain Analysis
4.2. Analysis of the Average Contact Forces
4.3. Investigation of Contact Forces within Pebble Aggregates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, P.; Yu, Q.; Zhao, X.; Zhou, C.; Shi, P. Three-dimensional discrete element modeling of the irregularly shaped pebbles used in a truck escape ramp. Comput. Part. Mech. 2020, 7, 479–490. [Google Scholar] [CrossRef]
- Besiktepe, D.; Valdes-Vasquez, R.; Strong, K.; Shuler, S. Improving performance of emergency escape ramps (EERs). J. Transp. Saf. Secur. 2022, 14, 541–561. [Google Scholar] [CrossRef]
- Annagür, H.M.; Çetin, M.Y. Performance and Geotechnical Properties of the Aggregates Used for the Turkish Trans-European Motorway Truck Escape Ramps. Transp. Infrastruct. Geotechnol. 2023, 1–25. [Google Scholar] [CrossRef]
- Trajkovski, J.; Ambrož, M.; Kunc, R. Gravel arrester beds as a safety measure at the motorway exit ramps: Experimental and numerical study. Road Mater. Pavement Des. 2024, 25, 99–114. [Google Scholar] [CrossRef]
- Ambrož, M.; Trajkovski, J.; Kunc, R. Gravel arrester beds as an important motorway safety element. Transp. Res. Procedia 2023, 69, 592–599. [Google Scholar] [CrossRef]
- Qin, P.; Li, Z.; Li, H.; Huang, J.; Wang, G. Influence of Aggregate Pollution in Truck Escape Ramps on Stopping Distance of Uncontrolled Vehicles. Sustainability 2022, 14, 11593. [Google Scholar] [CrossRef]
- Roostaee, A.; Faghani, A.; Vaezi, M. On the drag coefficient of flat and non-flat solid particles of irregular shapes: An experimental validation study. AIChE J. 2022, 68, e17821. [Google Scholar] [CrossRef]
- Quezada, J.C.; Chazallon, C. Discrete element modelling of hot mix asphalt complex modulus using realistic aggregate shapes. Road Mater. Pavement Des. 2022, 23 (Suppl. 1), 178–195. [Google Scholar] [CrossRef]
- Cinar, K.; Parasiz, S.A.; Akbulut, M.; Eruslu, S.O. An Experimental and Numerical Investigation of Particle Morphology Effect on the Elasto-Plastic Behavior of Particle-Filled Composites. Fibers Polym. 2022, 23, 2694–2711. [Google Scholar] [CrossRef]
- Isoz, M.; Šourek, M.K.; Studeník, O.; Kočí, P. Hybrid fictitious domain-immersed boundary solver coupled with discrete element method for simulations of flows laden with arbitrarily-shaped particles. Comput. Fluids 2022, 244, 105538. [Google Scholar] [CrossRef]
- Connolly, B.J.; Loth, E.; Smith, C.F. Shape and drag of irregular angular particles and test dust. Powder Technol. 2020, 363, 275–285. [Google Scholar] [CrossRef]
- Delestre, B.; Abad, A.; Talbi, M.; Fromager, M.; Brunel, M. 3D tomographic reconstruction of irregular rough particles from interferometric images. J. Quant. Spectrosc. Radiat. Transf. 2022, 288, 108193. [Google Scholar] [CrossRef]
- Fan, M.; Su, D.; Wu, D.; Chen, X. Reconstruction of irregular elongated/flattened particles and generation of particle aggregates with customizable form distributions. Powder Technol. 2023, 425, 118553. [Google Scholar] [CrossRef]
- Trunk, R.; Marquardt, J.; Thaeter, G.; Nirschl, H.; Krause, M.J. Towards the simulation of arbitrarily shaped 3D particles using a homogenised lattice Boltzmann method. Comput. Fluids 2018, 172, 621–631. [Google Scholar] [CrossRef]
- Liu, P.; Yu, Q.; Zhao, X.; Shi, P.; Chen, H. Discrete element analysis of the reconstruction method for randomly shaped pebbles. IEEE Access 2019, 7, 137317–137329. [Google Scholar] [CrossRef]
- Mu, J.; Li, Y.; Jin, C.; Liu, Y.; Li, H.; Liu, J. Simulation of V-tunnel test for fresh concrete on the basis of lattice Boltzmann method. Cem. Concr. Compos. 2022, 133, 104728. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Lv, L.; Yuan, Q. Discrete Element Simple Shear Test Considering Particle Shape. Appl. Sci. 2023, 13, 11382. [Google Scholar] [CrossRef]
- Mahboob, A.; Hassanshahi, O.; Tabrizi, A.S. Three-dimensional simulation of granular materials by discrete element method (DEM) by considering the fracture effect of particles. J. Civ. Eng. Res. 2023, 5, 14–28. [Google Scholar] [CrossRef]
- Imseeh, W.H.; Jarrar, Z.A.; Alshibli, K.A. Influence of Sand Morphology on Interparticle Force and Stress Transmission Using Three-Dimensional Discrete-and Finite-Element Methods. J. Eng. Mech. 2021, 147, 04021081. [Google Scholar] [CrossRef]
- Aikins, K.A.; Ucgul, M.; Barr, J.B.; Awuah, E.; Antille, D.L.; Jensen, T.A.; Desbiolles, J.M.A. Review of discrete element method simulations of soil tillage and furrow opening. Agriculture 2023, 13, 541. [Google Scholar] [CrossRef]
- Chew, K.; Chiaro, G.; Vinod, J.S.; Tasalloti, A.; Allulakshmi, K. Direct shear behavior of gravel-rubber mixtures: Discrete element modeling and microscopic investigations. Soils Found. 2022, 62, 101156. [Google Scholar] [CrossRef]
- Rabiei, M.; Samea, P.; Shadi, A.; Ghoreishi-Madiseh, S. A discrete element analysis for general failure behavior of basalt. Int. J. Rock Mech. Min. Sci. 2023, 167, 105394. [Google Scholar] [CrossRef]
- Harmon, J.M.M.; Gabuchian, V.; Rosakis, A.J.J.; Conte, J.P.P.; Restrepo, J.I.; Rodriguez, A.; Nema, A.; Pedretti, A.R.R.; Andrade, J.E. Predicting the seismic behavior of multiblock tower structures using the level set discrete element method. Earthq. Eng. Struct. Dyn. 2023, 52, 2577–2596. [Google Scholar] [CrossRef]
- Singh, J.; Pradhan, S.P.; Vishal, V.; Singh, M. Characterization of a fractured rock mass using geological strength index: A discrete fracture network approach. Transp. Geotech. 2023, 40, 100984. [Google Scholar] [CrossRef]
- Golshan, S.; Munch, P.; Gassmöller, R.; Kronbichler, M.; Blais, B. Lethe-DEM: An open-source parallel discrete element solver with load balancing. Comput. Part. Mech. 2023, 10, 77–96. [Google Scholar] [CrossRef]
- Sheikh, T.; Behdinan, K. Insight of discrete scale and multiscale methods for characterization of composite and nanocomposite materials. Arch. Comput. Methods Eng. 2023, 30, 1231–1265. [Google Scholar] [CrossRef]
- Pandey, A.K.; Mathur, D. Finite Element Analysis and Optimization of Flexible Pavement. Int. J. Civ. Eng. Appl. Res. 2023, 4, 6–25. [Google Scholar]
- Câmara, G.; Azevedo, N.M.; Micaelo, R. Impact of Rejuvenator-Modified Mastic on Asphalt Mixture Stiffness: Meso-Scale Discrete Element Method Approach. Buildings 2023, 13, 3023. [Google Scholar] [CrossRef]
- Joumblat, R.; Masri, Z.A.B.A.; Al Khateeb, G.; Elkordi, A.; El Tallis, A.R.; Absi, J. State-of-the-art review on permanent deformation characterization of asphalt concrete pavements. Sustainability 2023, 15, 1166. [Google Scholar] [CrossRef]
- Jelagin, D.; Olsson, E.; Raab, C.; Partl, M.N. Experimental and numerical modelling of shear bonding between asphalt layers. Road Mater. Pavement Des. 2023, 24 (Suppl. 1), 176–191. [Google Scholar] [CrossRef]
- Acquah, K.; Chen, Y. Discrete element modelling of soil pressure under varying number of tire passes. J. Terramech. 2023, 107, 23–33. [Google Scholar] [CrossRef]
- Jasoliya, D.; Untaroiu, A.; Untaroiu, C. A review of soil modeling for numerical simulations of soil-tire/agricultural tools interaction. J. Terramech. 2024, 111, 41–64. [Google Scholar] [CrossRef]
- Swamy, V.S.; Pandit, R.; Yerro, A.; Sandu, C.; Rizzo, D.M.; Sebeck, K.; Gorsich, D. Review of modeling and validation techniques for tire-deformable soil interactions. J. Terramech. 2023, 109, 73–92. [Google Scholar] [CrossRef]
- Kansake, B.A.; Frimpong, S.; Nyaaba, W.; Ateng, I.A. Three-dimensional finite element modeling of haul road response to ultra-large dump truck dynamic loading. Min. Metall. Explor. 2023, 40, 315–335. [Google Scholar] [CrossRef]
- Schott, D.L.; Mohajeri, J. Multibody Dynamics and Discrete Element Method Co-Simulations for Large-Scale Industrial Equipment. In Simulations in Bulk Solids Handling: Applications of DEM and Other Methods; Wiley Online Library: Hoboken, NJ, USA, 2023; pp. 107–143. [Google Scholar]
- Zhang, H.; Zhou, J.; Wang, Q.; Zhu, C.; Shao, H. Classification-Detection of Metal Surfaces under Lower Edge Sharpness Using a Deep Learning-Based Approach Combined with an Enhanced LoG Operator. CMES-Comput. Model. Eng. Sci. 2023, 137, 1551. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack OD, L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Deng, P.; Liu, Q.; Huang, X.; Liu, Q.; Ma, H.; Li, W. Acquisition of normal contact stiffness and its influence on rock crack propagation for the combined finite-discrete element method (FDEM). Eng. Fract. Mech. 2021, 242, 107459. [Google Scholar] [CrossRef]
- Frano, R.L.; Puccini, M. Preliminary investigation of Li4SiO4 pebbles structural performance. Fusion Eng. Des. 2021, 167, 112388. [Google Scholar] [CrossRef]
- Lü, X.L.; Zeng, S.; Qian, J.G.; Huang, M.S. DEM analysis of the shear strength of cross-anisotropic sand with non-spherical particles. Géotechnique Lett. 2017, 7, 230–236. [Google Scholar] [CrossRef]
- Dai, B.; Yang, J.; Luo, X. A numerical analysis of the shear behavior of granular soil with fines. Particuology 2015, 21, 160–172. [Google Scholar] [CrossRef]
- Liu, P.; Bai, P.; Liu, W. Analysis of the Load-Bearing Capacity of Pebble Aggregates. Appl. Sci. 2024, 14, 3109. [Google Scholar] [CrossRef]
- Sohn, D.; Lee, Y.; Ahn, M.-Y.; Park, Y.-H.; Cho, S. Numerical prediction of packing behavior and thermal conductivity of pebble beds according to pebble size distributions and friction coefficients. Fusion Eng. Des. 2018, 137, 182–190. [Google Scholar] [CrossRef]
- Suikkanen, H.; Ritvanen, J.; Jalali, P.; Kyrki-Rajamäki, R. Discrete element modelling of pebble packing in pebble bed reactors. Nucl. Eng. Des. 2014, 273, 24–32. [Google Scholar] [CrossRef]
a1 | a2 | a3 | a4 | a5 | a6 | |
---|---|---|---|---|---|---|
Testing results | 0.02614 | −0.1935 | −0.02807 | 3.908 | −2.677 | 0.6594 |
Simulation results 1 | 0.1836 | −2.635 | 13.05 | −24.02 | 18.15 | −2.664 |
Simulation results 2 | 0.06367 | −0.8841 | 4.241 | −5.78 | 3.305 | −0.1568 |
Average Force | Ratio | 0% | 1.13% | 2.26% | 3.39% | 4.52% | 5.65% |
---|---|---|---|---|---|---|---|
Tangential forces (N) | 1.1 | 0.0119 | 0.0176 | 0.0605 | 0.1140 | 0.1614 | 0.1778 |
1.3 | 0.0169 | 0.0234 | 0.0479 | 0.0831 | 0.0987 | 0.1367 | |
1.5 | 0.0238 | 0.0267 | 0.0400 | 0.0460 | 0.0610 | 0.0666 | |
Normal forces (N) | 1.1 | 0.0535 | 0.0697 | 0.2115 | 0.4020 | 0.5780 | 0.6259 |
1.3 | 0.0730 | 0.0904 | 0.1688 | 0.2957 | 0.3529 | 0.4883 | |
1.5 | 0.0949 | 0.1042 | 0.1456 | 0.1613 | 0.2137 | 0.2331 | |
Resultant forces (N) | 1.1 | 0.0551 | 0.0722 | 0.2210 | 0.4198 | 0.6032 | 0.6538 |
1.3 | 0.0752 | 0.0938 | 0.1763 | 0.3086 | 0.3684 | 0.5097 | |
1.5 | 0.0983 | 0.1080 | 0.1517 | 0.1685 | 0.2233 | 0.2436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Liu, W.; Bai, P. Investigating the Influence of Varied Particle Sizes on the Load-Bearing Properties of Arrester Bed Aggregates. Materials 2024, 17, 2271. https://doi.org/10.3390/ma17102271
Liu P, Liu W, Bai P. Investigating the Influence of Varied Particle Sizes on the Load-Bearing Properties of Arrester Bed Aggregates. Materials. 2024; 17(10):2271. https://doi.org/10.3390/ma17102271
Chicago/Turabian StyleLiu, Pan, Wenju Liu, and Peiyi Bai. 2024. "Investigating the Influence of Varied Particle Sizes on the Load-Bearing Properties of Arrester Bed Aggregates" Materials 17, no. 10: 2271. https://doi.org/10.3390/ma17102271
APA StyleLiu, P., Liu, W., & Bai, P. (2024). Investigating the Influence of Varied Particle Sizes on the Load-Bearing Properties of Arrester Bed Aggregates. Materials, 17(10), 2271. https://doi.org/10.3390/ma17102271