Synthesis, Crystal Structure, and Optical and Magnetic Properties of the New Quaternary Erbium Telluride EuErCuTe3: Experiment and Calculation
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis
2.3. X-ray Diffraction Analysis
2.4. Electron-Beam Microprobe Analysis
2.5. Magnetic Measurements
2.6. Spectroscopy of the Raman Scattering
2.7. DFT Calculations
3. Results
3.1. Crystal Structures of the EuErCuTe3
- aPnma(cCmcm) = 10.1005(2) Å () → 10.4602(7) Å ()→ 11.1957(7) Å ();
- bPnma(aCmcm) = 3.91255(4) Å () → 4.0555(3) Å ()→ 4.3086(3) Å ();
- cPnma(bCmcm) = 12.8480(2) Å () → 13.3570(9) Å ()→ 14.3093(9) Å ().
- d(Eu–Ch): 3.060 Å (Ch = S) → 3.130 Å (Ch = Se) → 3.330 Å (Ch = Te);
- d(Er–Ch): 2.723 Å (Ch = S) → 2. 730 Å (Ch = Se) → 3.037 Å (Ch = Te);
- d(Cu–Ch): 2.350 Å (Ch = S) → 2.468 Å (Ch = Se) → 2.654 Å (Ch = Te).
- aPnma(cCmcm) = 11.3761(7) Å () → 11.1957(7) Å () → 11.1174(7) Å ();
- bPnma(aCmcm) = 4.3405(3) Å () → 4.3086(3) Å ()→ 4.2937(3) Å ();
- cPnma(bCmcm) = 14.3469(9) Å () → 14.3093(9) Å ()→ 14.2876(9) Å ().
- d(Eu–Te): 3.377Å → 3.330 Å → 3.332 Å;
- d(Ln–Te): 3.081 Å → 3.037 Å → 3.017 Å;
- d(Cu–Te): 2.666 Å → 2.654 Å → 2.648 Å.
3.2. Magnetic Properties of the EuErCuTe3
3.3. Band Structure of EuErCuTe3
3.4. Elastic Constants and Elastic Modulus
3.5. Raman, IR, and Phonon Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duczmal, M.; Pawlak, L. Magnetic properties of TlLnS2 compounds (Ln = Nd, Gd, Dy, Er and Yb). J. Alloys Compd. 1994, 209, 271–274. [Google Scholar] [CrossRef]
- Ahmed, N.; Nisar, J.; Kouser, R.; Nabi, A.G.; Mukhtar, S.; Saeed, Y.; Nasim, M.H. Study of electronic, magnetic and optical prop-erties of KMS2 (M = Nd, Ho, Er and Lu): First principle calculations. Mater. Res. Expr. 2017, 4, 065903. [Google Scholar] [CrossRef]
- Azarapin, N.O. Synthesis, Structure and Properties of Compounds BaRECuS3 (RE = Rare Earth Element). Ph.D. Thesis, University of Tyumen, Tyumen, Russia, 2022. [Google Scholar]
- Esmaeili, M.; Forbes, S.; Tseng, Y.C.; Mozharivskyj, Y. Crystal Structure, Electronic and Physical Properties of Monoclinic RECuTe2 in Contrast to RECuSe2 (RE: Pr, Sm, Gd, Dy and Er). Solid State Sci. 2014, 36, 89–93. [Google Scholar] [CrossRef]
- Esmaeili, M.; Tseng, Y.-C.; Mozharivskyj, Y. Thermoelectric properties, crystal and electronic structure of semiconducting RECuSe2 (RE = Pr, Sm, Gd, Dy and Er). J. Alloys Compd. 2014, 610, 555–560. [Google Scholar] [CrossRef]
- Yao, J.; Deng, B.; Sherry, L.J.; McFarland, A.D.; Ellis, D.E.; van Duyne, R.P.; Ibers, J.A. Syntheses, structure, some band gaps, and electronic structures of CsLnZnTe3 (Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y). Inorg. Chem. 2004, 43, 7735–7740. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.; Huang, F.Q.; Caspi, E.N.; McFarland, A.D.; Haynes, C.L.; Somers, R.C.; Jorgensen, J.D.; Van Duyne, R.P.; Ibers, J.A. Syntheses, structure, and selected physical properties of CsLnMnSe3 (Ln = Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y) and AYbZnQ3 (A = Rb, Cs; Q = S, Se, Te). Inorg. Chem. 2004, 43, 1082–1089. [Google Scholar] [CrossRef]
- Yin, W.; Wang, W.; Bai, L.; Feng, K.; Shi, Y.; Hao, W.; Yao, J.; Wu, Y. Syntheses, structures, physical properties, and electronic structures of Ba2MLnTe5 (M = Ga and Ln = Sm, Gd, Dy, Er, Y; M = In and Ln = Ce, Nd, Sm, Gd, Dy, Er, Y). Inorg. Chem. 2012, 51, 11736–11744. [Google Scholar] [CrossRef]
- Yin, W.; Feng, K.; Wang, W.; Shi, Y.; Hao, W.; Yao, J.; Wu, Y. Syntheses, structures, optical and magnetic properties of Ba2MLnSe5 (M = Ga, In; Ln = Y, Nd, Sm, Gd, Dy, Er). Inorg. Chem. 2012, 51, 6860–6867. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Andreev, O.V.; Galenko, E.O.; Koltsov, S.I. Trends in thermodynamic parameters of phase transitions of lan-thanide sulfides SrLnCuS3 (Ln = La–Lu). J. Therm. Anal. Calorim. 2017, 128, 993–999. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Solovyov, L.A. Grigoriev, M.V.; Andreev, O.V. Crystal structure variations in the series SrLnCuS3 (Ln = La, Pr, Sm, Gd, Er and Lu). Acta Crystallogr. 2019, C75, 584–588. [Google Scholar]
- Ruseikina, A.V.; Soloviev, L.A.; Galenko, E.O.; Grigoriev, M.V. Refined Crystal Structures of SrLnCuS3 (Ln = Er, Yb). Russ. J. Inorg. Chem. 2018, 63, 1225–1231. [Google Scholar] [CrossRef]
- Huang, F.Q.; Ibers, J.A. Syntheses and structures of the quaternary copper tellurides K3Ln4Cu5Te10 (Ln = Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln = Nd, Gd), and Cs3Gd4Cu5Te10. J. Solid State Chem. 2001, 160, 409–414. [Google Scholar] [CrossRef]
- Ikhioya, I.L.; Nkele, A.C.; Chigozirim, E.M.; Aisida, S.O.; Maaza, M.; Ezema, F.I. Effects of Erbium on the Properties of Electro-chemically-Deposited Zirconium Telluride Thin Films. Nanoarchitectonics 2020, 2, 110–118. [Google Scholar]
- Ruseikina, A.V.; Chernyshev, V.A.; Velikanov, D.A.; Aleksandrovsky, A.S.; Shestakov, N.P.; Molokeev, M.S.; Grigoriev, M.V.; Andreev, O.V.; Garmonov, A.A.; Matigorov, A.V.; et al. Regularities of the property changes in the compounds EuLnCuS3 (Ln = La–Lu). J. Alloys Compd. 2021, 874, 159968. [Google Scholar] [CrossRef]
- Andreev, O.V.; Atuchin, V.V.; Aleksandrovsky, A.S.; Denisenko, Y.G.; Zakharov, B.A.; Tyutyunnik, A.P.; Habibullayev, N.N.; Velikanov, D.A.; Ulybin, D.A.; Shpindyuk, D.D. Synthesis, structure, and properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er). Crystals 2022, 12, 17. [Google Scholar] [CrossRef]
- Koscielski, L.A.; Ibers, J.A. The Structural Chemistry of Quaternary Chalcogenides of the Type AMM’Q3. Z. Anorg. Allg. Chem. 2012, 638, 2585–2593. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Solovyov, L.A.; Chernyshev, V.A.; Aleksandrovsky, A.S.; Andreev, O.V.; Krylova, S.N.; Krylov, A.S.; Velikanov, D.A.; Molokeev, M.S.; Maximov, N.G.; et al. Synthesis, structure, and properties of EuErCuS3. J. Alloys Compd. 2019, 805, 779–788. [Google Scholar] [CrossRef]
- Boncher, W.; Dalafu, H.; Rosa, N.; Stoll, S. Europium chalcogenide magnetic semiconductor nanostructures. Coord. Chem. Rev. 2015, 289, 279–288. [Google Scholar] [CrossRef]
- Wolf, M.; Sürgers, C.; Fischer, G.; Scherer, T.; Beckmann, D. Fabrication and magnetic characterization of nanometer-sized ellipses of the ferromagnetic insulator EuS. J. Magn. Magn. Mater. 2014, 368, 49–53. [Google Scholar] [CrossRef]
- He, W.; Somarajan, S.; Koktysh, D.S.; Dickerson, J.H. Superantiferromagnetic EuTe nanoparticles: Room temperature colloidal synthesis, structural characterization, and magnetic properties. Nanoscale 2010, 3, 184–187. [Google Scholar] [CrossRef]
- Oliveira, N.F., Jr.; Foner, S.; Shapira, Y.; Reed, T.B. EuTe. I. Magnetic Behavior of Insulating and Conducting Single Crystals. Phys. Rev. 1972, B5, 2634. [Google Scholar] [CrossRef]
- Chen, J.; Dresselhaus, G.; Dresselhaus, M.; Springholz, G.; Bauer, G. Magnetic Properties of Heisenberg Antiferromagnetic EuTe/PbTe Superlattices. MRS Proc. 1994, 358. [Google Scholar] [CrossRef]
- Kępa, H.; Springholz, G.; Giebultowicz, T.M.; Goldman, K.I.; Majkrzak, C.F.; Kacman, P.; Blinowski, J.; Holl, S.; Krenn, H.; Bauer, G. Magnetic interactions in EuTe epitaxial layers and EuTe/PbTe superlattices. Phys. Rev. B 2003, 68, 024419. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Zhang, P.; Jing, Q.; Liu, X.; Zhang, J.; Xiao, N.; Yu, L.; Niu, P. Electrical transport properties of EuTe under high pressure. J. Mater. Chem. C 2021, 9, 17371–17381. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–766. [Google Scholar] [CrossRef]
- Pal, K.; Hua, X.; Xia, Y.; Wolverton, C. Unraveling the Structure-Valence-Property Relationships in AMM′Q3 Chalcogenides with Promising Thermoelectric Performance. ACS Appl. Energy Mater. 2019, 3, 2110–2119. [Google Scholar] [CrossRef]
- Pal, K.; Xia, Y.; Shen, J.; He, J.; Luo, Y.; Kanatzidis, M.G.; Wolverton, C. Accelerated discovery of a large family of quaternary chalcogenides with very low lattice thermal conductivity. npj Comput. Mater. 2021, 7, 82. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Andreev, O.V.; Demchuk, Z.A. Preparation of polycrystalline samples of the EuLnCuS3 (Ln = Gd, Lu) compounds. Inorg. Mater. 2016, 52, 537–542. [Google Scholar] [CrossRef]
- Solovyeva, A.V. Regularities of phase equilibria in the systems AIIS–FeS, AIIS–FeS–Ln2S3, AIIS–Cu2S–Ln2S3 (AII = Mg, Ca, Sr, Ba; Ln = La–Lu). Ph.D. Thesis, University of Tyumen, Tyumen, Russia, 2012. [Google Scholar]
- Sikerina, N.V. Regularities of Phase Equilibria in SrS–Ln2S3–Cu2S Systems, Preparation and Structure of SrLnCuS3 Compounds. Ph.D. Thesis, University of Tyumen, Tyumen, Russia, 2005. [Google Scholar]
- Wakeshima, M.; Furuuchi, F.; Hinatsu, Y. Crystal structures and magnetic properties of novel rare-earth copper sulfides, EuRCuS3 (R = Y, Gd–Lu). J. Phys. Condens. Matter 2004, 16, 5503–5518. [Google Scholar] [CrossRef]
- Rare-Earth Metal Long Term Air Exposure Test, Metallium, Inc. Available online: https://www.elementsales.com/re_exp/ (accessed on 22 February 2024).
- Keil, P.; Lutzenkirchen-Hecht, D.; Frahm, R. Investigation of room temperature oxidation of Cu in Air by YonedaXAFS. AIP Conf. Proc. 2007, 882, 490–492. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Spek. A.L. PLATON—A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2008. [Google Scholar]
- Crystal. Available online: http://www.crystal.unito.it/index.php (accessed on 10 January 2024).
- Energy-Consistent Pseudopotentials of the Stuttgart/Cologne Group. Available online: http://www.tc.uni-koeln.de/PP/clickpse.en.html (accessed on 10 January 2024).
- Towler, M. CRYSTAL Resourses Page. Available online: https://vallico.net/mike_towler/crystal.html (accessed on 10 January 2024).
- Grigoriev, M.V.; Solovyov, L.A.; Ruseikina, A.V.; Aleksandrovsky, A.S.; Chernyshev, V.A.; Velikanov, D.A.; Garmonov, A.A.; Molokeev, M.S.; Oreshonkov, A.S.; Shestakov, N.P.; et al. Quaternary Selenides EuLnCuSe3: Synthesis, Structures, Properties and In Silico Studies. Int. J. Mol. Sci. 2022, 23, 1503. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 9, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Ruseikina, A.V.; Grigoriev, M.V.; Garmonov, A.A.; Molokeev, M.S.; Schleid, T.; Safin, D.A. Synthesis, structures and magnetic properties of the Eu-based quaternary tellurides EuGdCuTe3 and EuLuCuTe3. Cryst. Eng. Comm. 2023, 25, 1716–1722. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Grigoriev, M.V.; Solovyov, L.A.; Molokeev, M.S.; Garmonov, A.A.; Velikanov, D.A.; Safin, D.A. Unravelling the rare-earth (RE) element-induced magnetic and optical properties in the structures of quaternary selenides SrRECuSe3. Inorg. Chem. Commun. 2023, 156. [Google Scholar] [CrossRef]
- Pavlyuk, M.D. Detector Crystals Based on CdTe and Cd1–xZnxTe for Direct Detection of X-ray and Gamma Quanta. Ph.D. Thesis, A.V. Shubnikov Institute of Crystallography RAS, Moscow, Russia, 2020. [Google Scholar]
- Ruseikina, A.V.; Molokeev, M.S.; Chernyshev, V.A.; Aleksandrovsky, A.S.; Krylov, A.S.; Krylova, S.N.; Velikanov, D.A.; Grigoriev, M.V.; Maximov, N.G.; Shestakov, N.P.; et al. Synthesis, structure, and properties of EuScCuS3 and SrScCuS3. J. Solid State Chem. 2021, 296, 121926. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, E.J.; Xiang, H.P.; Hao, X.F.; Liu, X.J.; Meng, J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. 2007, B76, 54–115. [Google Scholar]
- Korabelnikov, D.V.; Zhuravlev, Y.N. Ab-initio investigations of the elastic properties of chlorates and perchlorates. Phys. Solid State 2016, 58, 1166–1171. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, B.; Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 2012, 33, 93–106. [Google Scholar] [CrossRef]
EuErCuTe3 | |
---|---|
Molecular weight | 765.56 |
Space group | Cmcm |
Structure type | KZrCuS3 |
Z | 4 |
a (Å) | 4.3086(3) |
b (Å) | 14.3093(9) |
c (Å) | 11.1957(7) |
V (Å3) | 690.25(8) |
ρcal (g/cm3) | 7.367 |
μ (mm−1) | 36.369 |
Reflections measured | 6748 |
Reflections independent | 477 |
Reflections with Fo > 4σ(Fo) | 411 |
2θmax (°) | 27.48 |
h, k, l limits | −5 ≤ h ≤ 5, −18 ≤ k ≤ 18, −14 ≤ l ≤ 14 |
Rint | 0.070 |
Refinement results | |
Number of refinement parameters | 24 |
R1 with Fo > 4σ(Fo) | 0.026 |
wR2 | 0.056 |
Goof | 1.084 |
Δρmax(e/Å3) | 1.438 |
Δρmin(e/Å3) | −1.386 |
Extinction coefficient, ε | 0.0026(2) |
CSD-number | 2261647 |
Atom | x/a | y/b | z/c | Ueq (Å2) |
---|---|---|---|---|
Eu | 0 | 0.75485(6) | 1/4 | 0.0288(3) |
Er | 0 | 0 | 0 | 0.0229(2) |
Cu | 0 | 0.47077(14) | 1/4 | 0.0287(4) |
Te1 | 0 | 0.08068(6) | 1/4 | 0.0204(3) |
Te2 | 0 | 0.35822(5) | 0.06307(6) | 0.0218(2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
---|---|---|---|---|---|---|
Eu | 0.0153(4) | 0.0231(5) | 0.0480(5) | 0 | 0 | 0 |
Er | 0.0155(3) | 0.0205 (4) | 0.0328(4) | 0 | 0 | −0.0041(3) |
Cu | 0.0261(10) | 0.0263(10) | 0.0337(10) | 0 | 0 | 0 |
Te1 | 0.0166(5) | 0.0177(5) | 0.0269(5) | 0 | 0 | 0 |
Te2 | 0.0149(3) | 0.0185(4) | 0.0320(4) | 0 | 0 | −0.0028(3) |
Bond lengths | |||||
Eu–Te1 i | 3.294(1) | Er–Te1 | 3.0277(4) | Cu–Te2 | 2.641(1) |
Eu–Te1 ii | 3.294(1) | Er–Te1 v | 3.0277(4) | Cu–Te2 x | 2.641(1) |
Eu–Te2 iii | 3.3479(6) | Er–Te2 vi | 3.0423(5) | Cu–Te1 ii | 2.667(1) |
Eu–Te2 i | 3.3479(6) | Er–Te2 vii | 3.0423(5) | Cu–Te1 i | 2.667(1) |
Eu–Te2 ii | 3.3479(6) | Er–Te2 viii | 3.0423(5) | ||
Bond angles | |||||
Te1 i–Eu–Te1 ii | 81.68(3) | Te1–Er–Te1 v | 180.0 | Te2–Cu–Te2 x | 104.84(7) |
Te1 i–Eu–Te2 iii | 139.03(2) | Te1–Er–Te2 vi | 87.72(2) | Te2–Cu–Te1 ii | 111.08(1) |
Te1 ii–Eu–Te2 iii | 85.03(1) | Te1 v–Er–Te2 vi | 92.28(2) | Te2 x–Cu–Te1 ii | 111.08(1) |
Te1 i–Eu–Te2 i | 85.03(1) | Te1–Er–Te2 vii | 92.28(2) | Te2–Cu–Te1 i | 111.08(1) |
Te1 ii–Eu–Te2 i | 139.03(2) | Te1 v–Er–Te2 vii | 87.72(2) | Te2 x–Cu–Te1 i | 111.08(1) |
Te2 iii–Eu–Te2 i | 127.56(3) | Te2 vi–Er–Te2 vii | 180.00(2) | Te1 ii–Cu–Te1 i | 107.74(8) |
Te1 i–Eu–Te2 ii | 139.03(2) | Te1–Er–Te2 viii | 92.28(2) | ||
Te1 ii–Eu–Te2 ii | 85.03(1) | Te1 v–Er–Te2 viii | 87.72(2) | ||
Te2 iii–Eu–Te2 ii | 77.38(2) | Te2 vi–Er–Te2 viii | 89.84(2) | ||
Te2 i–Eu–Te2 ii | 80.10(2) | Te2 vii–Er–Te2 viii | 90.16(2) | ||
Te1 i–Eu–Te2 iv | 85.03(1) | Te1–Er–Te2 ix | 87.72(2) | ||
Te1 ii–Eu–Te2 iv | 139.03(2) | Te1 v–Er–Te2 ix | 92.28(2) | ||
Te2 iii–Eu–Te2 iv | 80.10(2) | Te2 vi–Er–Te2 ix | 90.16(2) | ||
Te2 i–Eu–Te2 iv | 77.38(2) | Te2 vii–Er–Te2 ix | 89.84(2) | ||
Te2 ii–Eu–Te2 iv | 127.56(3) | Te2 viii–Er–Te2 ix | 180.00(2) |
C11 | C12 | C13 | C22 | C23 | C33 | C44 | C55 | C66 | Averaging Scheme | B | G | Y | Poisson’s Ratio | HV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
122 | 52 | 40 | 95 | 47 | 113 | 10 | 31 | 45 | Voigt | 68 | 30 | 78 | 0.307 | 3.2 |
Reuss | 67 | 23 | 61 | 0.349 | ||||||||||
Hill | 67 | 26 | 70 | 0.328 |
Frequency, cm−1 | Type | IR | Raman | Involved Ions 1 | ||
---|---|---|---|---|---|---|
Active/ Inactive | Intensity IR (km·mol−1) | Active/ Inactive | Intensity Raman (Arbitrary Units) | |||
33 | B1u | A | 10 | I | Eu S, Er S, Cu W, Te1 S, Te2 S | |
48 | Au | I | 0 | I | Er S, Te2 S | |
54 | B1g | I | 0 | A | 358 | Eu S, Cu S, Te1 S, Te2 W |
59 | Ag | I | 0 | A | 582 | Eu S, Cu S, Te1 S, Te2 |
61 | B2g | I | 0 | A | 287 | Eu S, Cu W, Te2 |
67 | B2u | A | 18 | I | Eu, Er S, Cu S, Te1 S, Te2 W | |
71 | B1u | A | 14 | I | Eu W, Er S, Cu S, Te1, Te2 | |
81 | B3u | A | 49 | I | Eu, Er, Cu S, Te1 W, Te2 | |
82 | B2g | I | 0 | A | 415 | Eu, Cu S, Te2 |
86 | Ag | I | 0 | A | 136 | Eu S, Cu S, Te2 |
87 | B1g | I | 0 | A | 202 | Eu S, Cu S, Te1, Te2 |
88 | B1u | A | 90 | I | Eu S, Er, Cu, Te2 | |
90 | B2u | A | 2 | I | Eu S, Er, Cu S, Te1 W | |
92 | B3u | A | 115 | I | Eu S, Er, Cu W, Te1 W, Te2 | |
112 | B3u | A | 16 | I | Eu W, Er S, Cu S, Te1 | |
113 | B3g | I | 0 | A | 132 | Te2 S |
117 | Au | I | 0 | I | Er, Te2 | |
119 | B1g | I | 0 | A | 25 | Eu W, Cu, Te1 W, Te2 |
120 | B1u | A | 374 | I | Er, Cu S, Te1 W, Te2 | |
122.66 | B2u | A | 495 | I | Eu, Er, Te2 | |
123.50 | B2g | I | 0 | A | 1.5 | Eu, Cu, Te1, Te2 |
131.92 | B3u | A | 79 | I | Eu, Er W, Cu, Te1 S, Te2 | |
131.95 | B1g | I | 0 | A | 47 | Eu, Cu S, Te1 S, Te2 W |
131.97 | Ag | I | 0 | A | 119 | Eu, Te1, Te2 |
132.07 | B2u | A | 135 | I | Eu W, Cu S, Te1 S | |
138 | Ag | I | 0 | A | 51 | Cu S, Te1, Te2 W |
145 | B2g | I | 0 | A | 116 | Eu W, Cu S, Te1 S, Te2 W |
146 | Ag | I | 0 | A | 1000 | Cu, Te1, Te2 |
148 | B1u | A | 5 | I | Er, Cu, Te2 | |
151 | B2g | I | 0 | A | 59 | Cu, Te1, Te2 |
154 | B1u | A | 137 | I | Er, Cu W, Te1 S, Te2 W | |
155 | B3u | A | 185 | I | Er, Cu, Te2 | |
159 | B3u | A | 2 | I | Er, Cu, Te1, Te2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruseikina, A.V.; Grigoriev, M.V.; Locke, R.J.C.; Chernyshev, V.A.; Garmonov, A.A.; Schleid, T. Synthesis, Crystal Structure, and Optical and Magnetic Properties of the New Quaternary Erbium Telluride EuErCuTe3: Experiment and Calculation. Materials 2024, 17, 2284. https://doi.org/10.3390/ma17102284
Ruseikina AV, Grigoriev MV, Locke RJC, Chernyshev VA, Garmonov AA, Schleid T. Synthesis, Crystal Structure, and Optical and Magnetic Properties of the New Quaternary Erbium Telluride EuErCuTe3: Experiment and Calculation. Materials. 2024; 17(10):2284. https://doi.org/10.3390/ma17102284
Chicago/Turabian StyleRuseikina, Anna V., Maxim V. Grigoriev, Ralf J. C. Locke, Vladimir A. Chernyshev, Alexander A. Garmonov, and Thomas Schleid. 2024. "Synthesis, Crystal Structure, and Optical and Magnetic Properties of the New Quaternary Erbium Telluride EuErCuTe3: Experiment and Calculation" Materials 17, no. 10: 2284. https://doi.org/10.3390/ma17102284
APA StyleRuseikina, A. V., Grigoriev, M. V., Locke, R. J. C., Chernyshev, V. A., Garmonov, A. A., & Schleid, T. (2024). Synthesis, Crystal Structure, and Optical and Magnetic Properties of the New Quaternary Erbium Telluride EuErCuTe3: Experiment and Calculation. Materials, 17(10), 2284. https://doi.org/10.3390/ma17102284