Optimal Preparation and Performance Study of Eco-Friendly Composite Chemical Dust Suppressants: A Case Study in a Construction Site in Chengdu
Abstract
:1. Introduction
2. Experimental Program
2.1. Raw Materials
2.2. Test Instruments
2.3. Test Procedures
3. Selection of Dust Suppressant Raw Materials
3.1. Selection and Treatment of Soil Samples
3.2. Optimal Selection of Binder
3.3. Optimal Selection of Water-Retaining Agent
3.4. Optimal Selection of Surfactant
4. Optimal Selection of Dust Suppressant Mix Design
4.1. Mix Design Using Response Surface Methodology
4.2. Variance of Regression Model Analysis
4.2.1. Viscosity
4.2.2. Evaporation Resistance
4.2.3. Permeability Rate
4.2.4. Two-Factor Interaction Analysis
4.3. Optimization and Validation
4.3.1. Model Validation
4.3.2. Optimal Selection of Values
5. Characterization of Dust Suppressant Properties
5.1. SEM Analysis
5.2. Toxicological Analysis
5.3. Wind Erosion Resistance Test
5.4. Applications: On-Site Spraying Test
6. Conclusions
- Optimal components include hydroxyethyl cellulose, glycerol, and Isotridecanol polyoxyethylene ether. HEC ensures stable viscosity, glycerol enhances water retention, and AEO-13 acts as a surfactant. HEC and sodium polyacrylate have viscosity values of 137.48 mPa·s and 297.7 mPa·s, respectively, at a mass concentration of 0.5%. Glycerol and triethanolamine at a mass concentration of 3% have water retention rates of 12.83% and 9.1%, respectively. Isostearyl alcohol polyoxyethylene ether exhibits the lowest surface tension at 29.5 mN/m and thus is selected as the surfactant.
- Applying response surface methodology, the ideal composition is 0.2% HEC, 2.097% glycerol, and 0.693% AEO-13. This model was verified, confirming its effective predictive accuracy.
- The resulting dust suppressant exhibits a viscosity of 108.9 mPa·s, an anti-evaporation rate of 45.78%, a permeability rate of 0.34 cm/min, a pH of 6.5, and a surface tension of 27.7 mN/m.
- Scanning electron microscopy (SEM) analysis reveals improved surface morphology, forming denser aggregates and validating the dust suppressant’s ability to protect moisture and bond fine particles.
- After conducting on-site spraying experiments at the construction site, data collected from TSP indicate that the weekly average concentration of TSP before spraying at the construction site was 239.74 μg/m3. Following spraying, the weekly average concentration of TSP decreased to 118.54 μg/m3, representing a 51% reduction compared to before spraying. This demonstrates the dust suppression effect of the dust suppressant on particulate matter. However, due to limited resources, the dust suppressant is currently only being tested at construction sites in Chengdu, China. Future research will aim to conduct experimental studies in different regions.
- This dust suppressant has room for further optimization in terms of raw material selection, aiming to reduce its preparation cost. Moreover, under conditions of temperatures exceeding 50 °C and gale-force wind speeds surpassing level 9, the dust suppression efficiency of the agent can significantly decrease. To ensure its dust-suppression effectiveness, multiple spraying applications can be employed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; Zhang, X.; Wu, M. Mitigating construction dust pollution: State of the art and the way forward. J. Clean. Prod. 2016, 112, 1658–1666. [Google Scholar] [CrossRef]
- Azam, S.; Mishra, D.P. Effects of particle size, dust concentration and dust-dispersion-air pressure on rock dust inertant requirement for coal dust explosion suppression in underground coal mines. Process. Saf. Environ. Prot. 2019, 126, 35–43. [Google Scholar] [CrossRef]
- Pollock, D.; Organiscak, J. Airborne Dust Capture and Induced Airflow of Various Spray Nozzle Designs. Aerosol Sci. Technol. 2007, 41, 711–720. [Google Scholar] [CrossRef]
- Tong, R.; Cheng, M.; Zhang, L.; Liu, M.; Yang, X.; Li, X.; Yin, W. The construction dust-induced occupational health risk using Monte-Carlo simulation. J. Clean. Prod. 2018, 184, 598–608. [Google Scholar] [CrossRef]
- Muleski, G.E.; Cowherd, C.; Kinsey, J.S. Particulate Emissions from Construction Activities. J. Air Waste Manag. Assoc. 2005, 55, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Tian, W.; Li, H. Dynamic health risk assessment model for construction dust hazards in the reuse of industrial buildings. J. Affect. Disord. 2021, 210, 108736. [Google Scholar] [CrossRef]
- Zuo, J.; Rameezdeen, R.; Hagger, M.; Zhou, Z.; Ding, Z. Dust pollution control on construction sites: Awareness and self-responsibility of managers. J. Clean. Prod. 2017, 166, 312–320. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Li, X. Study on characteristics and microscopic mechanism of composite environment-friendly dust suppressant for urban construction site soil fugitive dust based on response surface methodology optimization. Environ. Sci. Pollut. Res. 2023, 30, 41954–41969. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, Y.L.; Wu, L.Y.; Zhang, Y.W.; Wei, W.J.; Li, H.Y. Preparation and Application of Compound Antifreeze Dust Inhibitor. Shandong Chem. Ind. 2018, 47, 22–24. [Google Scholar] [CrossRef]
- Yu, X.; Hu, X.; Cheng, W.; Zhao, Y.; Shao, Z.; Xue, D.; Wu, M. Preparation and evaluation of humic acid–based composite dust suppressant for coal storage and transportation. Environ. Sci. Pollut. Res. 2021, 29, 17072–17086. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, W.; Wang, H.; Bao, Q.; Jin, H.; Liu, Y. Preparation and experimental dust suppression performance characterization of a novel guar gum-modification-based environmentally-friendly degradable dust suppressant. Powder Technol. 2018, 339, 314–325. [Google Scholar] [CrossRef]
- Wu, M.; Hu, X.; Zhang, Q.; Zhao, Y.; Sun, J.; Cheng, W.; Fan, Y.; Zhu, S.; Lu, W.; Song, C. Preparation and performance evaluation of environment-friendly biological dust suppressant. J. Clean. Prod. 2020, 273, 123162. [Google Scholar] [CrossRef]
- Feng, J.; Yan, G.; Wang, P.; Yang, T.; Liu, J. Preparation and Characteristic Analysis of a New Degradable Nano-cellulose Dust Suppressant. Min. Res. Dev. 2020, 40, 106–110. [Google Scholar] [CrossRef]
- Tripathi, A.; Sandha, K.S. Impact of Thickness and wt% on the Dielectric Properties of Sugarcane Bagasse and MWCNT Composite Material as Microwave Absorber. Waste Biomass-Valorization 2023, 14, 2009–2024. [Google Scholar] [CrossRef]
- Lee, T.; Kim, S.; Kim, S.; Kwon, N.-Y.; Rho, S.; Hwang, D.S.; Kim, M. Environmentally Friendly Methylcellulose-Based Binders for Active and Passive Dust Control. ACS Appl. Mater. Interfaces 2020, 12, 50860–50869. [Google Scholar] [CrossRef]
- Medeiros, M.A.; Leite, C.M.; Lago, R.M. Use of glycerol by-product of biodiesel to produce an efficient dust suppressant. Chem. Eng. J. 2012, 180, 364–369. [Google Scholar] [CrossRef]
- Gao, N.; Zhou, T.; Jin, L.; Fan, J.; Tong, L.; Zhang, B. Research on the optimization formula performance and dust suppressant based on response surface method. Adv. Geo-Energy Res. 2024, 11, 115–131. [Google Scholar] [CrossRef]
- Luo, L.; Wang, G.; Wang, Z.; Ma, J.; He, Y.; He, J.; Wang, L.; Liu, Y.; Xiao, H.; Xiao, Y.; et al. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology. Sci. Total Environ. 2021, 788, 147889. [Google Scholar] [CrossRef]
- Aslan, N.; Cebeci, Y. Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 2007, 86, 90–97. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, W.; Jin, H.; Ma, H.; Hua, Y.; Cai, P.; Wei, W. Solidifying dust suppressant based on modified chitosan and experimental study on its dust suppression performance. Adsorpt. Sci. Technol. 2018, 36, 640–654. [Google Scholar] [CrossRef]
- Yana, J.; Lee, C.; Umeda, M.; Kosaki, T. Spatial variability of soil chemical properties in a paddy field. Soil Sci. Plant Nutr. 2000, 46, 473–482. [Google Scholar]
- Reuben, J. Description and analysis of hydroxyethyl cellulose. Macromolecules 1984, 17, 156–161. [Google Scholar] [CrossRef]
- Liu, M.; Guo, T. Preparation and swelling properties of crosslinked sodium polyacrylate. J. Appl. Polym. Sci. 2001, 82, 1515–1520. [Google Scholar] [CrossRef]
- Li, S.; Zhou, G.; Liu, Z.; Wang, N.; Wei, Z.; Liu, W. Synthesis and performance characteristics of a new ecofriendly crust-dust suppressant extracted from waste paper for surface mines. J. Clean. Prod. 2020, 258, 120620. [Google Scholar] [CrossRef]
- Ghelich, R.; Jahannama, M.R.; Abdizadeh, H.; Torknik, F.S.; Vaezi, M.R. Central composite design (CCD)-Response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibers. Compos. Part B Eng. 2019, 166, 527–541. [Google Scholar] [CrossRef]
- Nam, S.-N.; Cho, H.; Han, J.; Her, N.; Yoon, J. Photocatalytic degradation of acesulfame K: Optimization using the Box–Behnken design (BBD). Process. Saf. Environ. Prot. 2018, 113, 10–21. [Google Scholar] [CrossRef]
- Islam, M.R.; Beg, M.; Mina, M. Fibre surface modifications through different treatments with the help of design expert software for natural fibre-based biocomposites. J. Compos. Mater. 2014, 48, 1887–1899. [Google Scholar] [CrossRef]
- TB/T3210.1-2009; Railway Transport of Coal Dust Suppression Technical Conditions-Part 1: Dust Agent. Peoples Republic of China Ministry of Railways: Beijing, China, 2009.
- HJ601-2011; Water Quality-Determination of Formaldehyde-Acetylacetone Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2011.
- GB/T7475-1987; Water-Quality-Determination of Copper, Zinc, Lead and Cadmium-Atomic Absorption Spectrometry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1987.
- HJ694-2014; Water Quality-Determination of Mercury, Arsenic, Selenium, Bismuth and Antimony-Atomic Fluorescence Spectrometry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2014.
- GB3095-2012; Ambint Air Quality Standards. Chinese Environmental Science Press: Beijing, China, 2012.
Time (h) | Water Content (%) | 0.01% | 0.05% | 0.1% | 0.5% | 1% | 3% |
---|---|---|---|---|---|---|---|
0 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
24 | 86.41 | 87.41 | 87.76 | 88.39 | 88.31 | 88.04 | 87.62 |
48 | 71.74 | 73.16 | 73.74 | 75.21 | 75.21 | 74.47 | 72.99 |
72 | 55.92 | 58.91 | 59.99 | 61.32 | 61.32 | 60.5 | 58.09 |
96 | 32.59 | 38.24 | 40.08 | 40.83 | 40.83 | 40.21 | 38.56 |
120 | 10.01 | 16.43 | 19.71 | 20.09 | 19.7 | 19.91 | 20.44 |
144 | 2.37 | 5.63 | 9.13 | 9.78 | 9.82 | 10.6 | 12.83 |
Time (h) | Water Content (%) | 0.01% | 0.05% | 0.1% | 0.5% | 1% | 3% |
---|---|---|---|---|---|---|---|
0 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
24 | 86.41 | 87.62 | 87.45 | 87.78 | 87.04 | 87.6 | 86.38 |
48 | 71.74 | 74.03 | 73.16 | 73.6 | 72.14 | 72.76 | 70.67 |
72 | 55.92 | 59.59 | 58.8 | 58.81 | 57.29 | 57.84 | 54.69 |
96 | 32.59 | 38.42 | 38.23 | 37.54 | 35.87 | 36.48 | 33.99 |
120 | 10.01 | 16.44 | 17.01 | 15.46 | 14 | 15.82 | 16.25 |
144 | 2.37 | 5.79 | 6.92 | 5.47 | 4.75 | 6.87 | 9.1 |
Std | Run | HEC (%) | C3H8O3 (%) | AEO-13 (%) | Viscosity (mPa·s) | Evaporation Resistance (%) | Permeability Rate (cm/min) |
---|---|---|---|---|---|---|---|
8 | 1 | 0.4 | 2 | 1 | 269.9 | 41.97 | 0.2 |
5 | 2 | 0.2 | 2 | 0.5 | 119.9 | 44.22 | 0.31 |
11 | 3 | 0.3 | 1 | 1 | 200.2 | 32.88 | 0.33 |
14 | 4 | 0.3 | 2 | 0.75 | 113.6 | 41.56 | 0.3 |
7 | 5 | 0.2 | 2 | 1 | 143.1 | 38.37 | 0.45 |
2 | 6 | 0.4 | 1 | 0.75 | 203.8 | 45.83 | 0.18 |
4 | 7 | 0.4 | 3 | 0.75 | 232.2 | 48.39 | 0.15 |
1 | 8 | 0.2 | 1 | 0.75 | 147.2 | 44.35 | 0.32 |
13 | 9 | 0.3 | 2 | 0.75 | 108.3 | 41.23 | 0.32 |
10 | 10 | 0.3 | 3 | 0.5 | 147.5 | 36.69 | 0.24 |
16 | 11 | 0.3 | 2 | 0.75 | 110.8 | 42.28 | 0.32 |
9 | 12 | 0.3 | 1 | 0.5 | 121.6 | 35.04 | 0.28 |
17 | 13 | 0.3 | 2 | 0.75 | 100.3 | 41.98 | 0.31 |
12 | 14 | 0.3 | 3 | 1 | 222.5 | 33.92 | 0.33 |
6 | 15 | 0.4 | 2 | 0.5 | 164.5 | 45.11 | 0.17 |
15 | 16 | 0.3 | 2 | 0.75 | 109.1 | 41.56 | 0.31 |
3 | 17 | 0.2 | 3 | 0.75 | 150.3 | 45.13 | 0.35 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 41,409.15 | 9 | 4601.02 | 92.76 | <0.0001 | ** |
A | 12,004.75 | 1 | 12,004.75 | 242.03 | <0.0001 | ** |
B | 794.01 | 1 | 794.01 | 16.01 | 0.0052 | ** |
C | 9954.6 | 1 | 9954.6 | 200.7 | <0.0001 | ** |
AB | 160.02 | 1 | 160.02 | 3.23 | 0.1155 | |
AC | 1689.21 | 1 | 1689.21 | 34.06 | 0.0006 | ** |
BC | 3.24 | 1 | 3.24 | 0.0653 | 0.8056 | |
A2 | 6136.93 | 1 | 6136.93 | 123.73 | <0.0001 | ** |
B2 | 5695.09 | 1 | 5695.09 | 114.82 | <0.0001 | ** |
C2 | 3242.95 | 1 | 3242.95 | 65.38 | <0.0001 | ** |
Residuals | 347.2 | 7 | 49.6 | |||
Lack of fit | 248.29 | 3 | 82.76 | 3.35 | 0.1368 | |
Pure error | 98.91 | 4 | 24.73 | |||
Total deviation | 41,756.34 | 16 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 311.26 | 9 | 34.58 | 86.66 | <0.0001 | ** |
A | 10.65 | 1 | 10.65 | 26.68 | 0.0013 | * |
B | 4.55 | 1 | 4.55 | 11.39 | 0.0118 | * |
C | 24.22 | 1 | 24.22 | 60.69 | 0.0001 | ** |
AB | 0.7921 | 1 | 0.7921 | 1.98 | 0.2017 | |
AC | 1.84 | 1 | 1.84 | 4.6 | 0.0691 | |
BC | 0.093 | 1 | 0.093 | 0.2331 | 0.644 | |
A2 | 151.28 | 1 | 151.28 | 379.06 | <0.0001 | ** |
B2 | 13.51 | 1 | 13.51 | 33.84 | 0.0007 | ** |
C2 | 118.21 | 1 | 118.21 | 296.2 | <0.0001 | ** |
Residuals | 2.79 | 7 | 0.3991 | |||
Lack of fit | 2.12 | 3 | 0.707 | 4.21 | 0.0995 | |
Pure error | 0.6725 | 4 | 0.1681 | |||
Total deviation | 314.05 | 16 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.0921 | 9 | 0.0102 | 79.14 | <0.0001 | ** |
A | 0.0666 | 1 | 0.0666 | 515.23 | <0.0001 | ** |
B | 0.0002 | 1 | 0.0002 | 1.55 | 0.2536 | |
C | 0.012 | 1 | 0.012 | 92.91 | <0.0001 | ** |
AB | 0.0009 | 1 | 0.0009 | 6.96 | 0.0335 | * |
AC | 0.003 | 1 | 0.003 | 23.4 | 0.0019 | ** |
BC | 0.0004 | 1 | 0.0004 | 3.09 | 0.122 | |
A2 | 0.0058 | 1 | 0.0058 | 45.19 | 0.0003 | ** |
B2 | 0.0026 | 1 | 0.0026 | 19.95 | 0.0029 | ** |
C2 | 0.0003 | 1 | 0.0003 | 1.96 | 0.2046 | |
Residuals | 0.0009 | 7 | 0.0001 | |||
Lack of fit | 0.0006 | 3 | 0.0002 | 2.98 | 0.1597 | |
Pure error | 0.0003 | 4 | 0.0001 | |||
Total deviation | 0.093 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Ma, B.; Zhang, Y.; Fan, Y. Optimal Preparation and Performance Study of Eco-Friendly Composite Chemical Dust Suppressants: A Case Study in a Construction Site in Chengdu. Materials 2024, 17, 2346. https://doi.org/10.3390/ma17102346
Xu Y, Ma B, Zhang Y, Fan Y. Optimal Preparation and Performance Study of Eco-Friendly Composite Chemical Dust Suppressants: A Case Study in a Construction Site in Chengdu. Materials. 2024; 17(10):2346. https://doi.org/10.3390/ma17102346
Chicago/Turabian StyleXu, Yong, Ben Ma, Yingda Zhang, and Yujie Fan. 2024. "Optimal Preparation and Performance Study of Eco-Friendly Composite Chemical Dust Suppressants: A Case Study in a Construction Site in Chengdu" Materials 17, no. 10: 2346. https://doi.org/10.3390/ma17102346
APA StyleXu, Y., Ma, B., Zhang, Y., & Fan, Y. (2024). Optimal Preparation and Performance Study of Eco-Friendly Composite Chemical Dust Suppressants: A Case Study in a Construction Site in Chengdu. Materials, 17(10), 2346. https://doi.org/10.3390/ma17102346