Microstructure-Based Modeling of Deformation and Damage Behavior of Extruded and Additively Manufactured 316L Stainless Steels
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material Preparation
2.2. Tensile Test and Microstructural Examination
3. Numerical Modeling
3.1. Crystal Plasticity Framework
3.2. Microstructure-Based Finite Element Model
4. Results and Discussion
4.1. Initial Microstructure and Crystallographic Texture
4.2. Stress–Strain Behavior and Deformed Microstructure
4.3. Microstructure-Based Modeling of the Tensile Deformation Behavior
4.4. Effect of Microstructure on Strain Localization and Damage Behavior
5. Conclusions
- The EA exhibited an equiaxed grain morphology with a rotated cube and Goss texture, whereas the LPBFed alloy (LA) exhibited a partially elliptic morphology on the LD plane owing to the presence of the melt pool and an orthogonal path-like morphology on the ND plane from the scanning path. The grain size distribution of the LA is quite dispersed due to its hierarchical nature of the microstructure. During tensile deformation, the <110> texture along the LD in the EA favored twinning, whereas the <001> texture along the LD in the LA impeded twinning.
- The LA exhibited a higher YS but lower UTS than the EA. The increased yield strength in the LA was attributed to the higher as-manufactured dislocation density and the solidification-enabled cellular subgrain cellular structures, resulting in reduced elongation. The presence of annealing twins and favorable texture in the EA contributed to its excellent elongation, along with a higher work-hardening rate than LA, owing to twin–dislocation interactions during plastic deformation.
- A mapping algorithm was developed to create microstructure-based RVEs by considering the real microstructures of alloys in crystal plasticity simulations. The developed CPFE model could accurately reproduce the tensile stress–strain behaviors and the evolution of crystallographic textures in both alloys by using a small number of modeling parameters.
- Microstructure-based crystal plasticity modeling results revealed that the stress concentration, strain localization, and damage accumulation behavior in the EA were generally uniform, whereas those in the LA were severely localized around sites with a high density of local initial dislocations and numerous HAGBs. The higher tendency for strain localization and damage accumulation led to a lower elongation observed in the LA compared to that of the EA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive Manufacturing of Metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive Manufacturing of Metallic Components–Process, Structure and Properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Haghdadi, N.; Laleh, M.; Moyle, M.; Primig, S. Additive Manufacturing of Steels: A Review of Achievements and Challenges. J. Mater. Sci. 2021, 56, 64–107. [Google Scholar] [CrossRef]
- Wang, Y.M.; Voisin, T.; McKeown, J.T.; Ye, J.; Calta, N.P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T.T.; et al. Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility. Nat. Mater. 2018, 17, 63–71. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Ma, H.Y.; Wang, J.C.; Qin, P.; Liu, Y.J.; Chen, L.Y.; Wang, L.Q.; Zhang, L.C. Advances in Additively Manufactured Titanium Alloys by Powder Bed Fusion and Directed Energy Deposition: Microstructure, Defects, and Mechanical Behavior. J. Mater. Sci. Technol. 2024, 183, 32–62. [Google Scholar] [CrossRef]
- Peng, L.; Deng, Q.; Wu, Y.; Fu, P.; Liu, Z.; Wu, Q.; Chen, K.; Ding, W. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review. Acta Met. Sin. 2022, 59, 31–54. [Google Scholar] [CrossRef]
- Sun, S.-H.; Ishimoto, T.; Hagihara, K.; Tsutsumi, Y.; Hanawa, T.; Nakano, T. Excellent Mechanical and Corrosion Properties of Austenitic Stainless Steel with a Unique Crystallographic Lamellar Microstructure via Selective Laser Melting. Scr. Mater. 2019, 159, 89–93. [Google Scholar] [CrossRef]
- Kong, D.; Dong, C.; Ni, X.; Zhang, L.; Luo, H.; Li, R.; Wang, L.; Man, C.; Li, X. Superior Resistance to Hydrogen Damage for Selective Laser Melted 316L Stainless Steel in a Proton Exchange Membrane Fuel Cell Environment. Corros. Sci. 2020, 166, 108425. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.; Tor, S.B.; Chua, C.K. Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316L by Selective Laser Melting. NPG Asia Mater. 2018, 10, 127–136. [Google Scholar] [CrossRef]
- Yin, Y.J.; Sun, J.Q.; Guo, J.; Kan, X.F.; Yang, D.C. Mechanism of High Yield Strength and Yield Ratio of 316 L Stainless Steel by Additive Manufacturing. Mater. Sci. Eng. A 2019, 744, 773–777. [Google Scholar] [CrossRef]
- Liu, G.Z.; Tao, N.R.; Lu, K. 316L Austenite Stainless Steels Strengthened by Means of Nano-Scale Twins. J. Mater. Sci. Technol. 2010, 26, 289–292. [Google Scholar] [CrossRef]
- Herath, C.; Wanni, J.; Arnold, S.M.; Achuthan, A. A Microstructure-Informed Constitutive Model for Hierarchical Materials with Subgrain Features. Int. J. Mech. Sci. 2024, 261, 108691. [Google Scholar] [CrossRef]
- Lodhi, M.J.K.; Deen, K.M.; Greenlee-Wacker, M.C.; Haider, W. Additively Manufactured 316L Stainless Steel with Improved Corrosion Resistance and Biological Response for Biomedical Applications. Addit. Manuf. 2019, 27, 8–19. [Google Scholar] [CrossRef]
- Qiu, C.; Kindi, M.A.; Aladawi, A.S.; Hatmi, I.A. A Comprehensive Study on Microstructure and Tensile Behaviour of a Selectively Laser Melted Stainless Steel. Sci. Rep. 2018, 8, 7785. [Google Scholar] [CrossRef] [PubMed]
- Ronneberg, T.; Davies, C.M.; Hooper, P.A. Revealing Relationships between Porosity, Microstructure and Mechanical Properties of Laser Powder Bed Fusion 316L Stainless Steel through Heat Treatment. Mater. Des. 2020, 189, 108481. [Google Scholar] [CrossRef]
- Vukkum, V.B.; Gupta, R.K. Review on Corrosion Performance of Laser Powder-Bed Fusion Printed 316L Stainless Steel: Effect of Processing Parameters, Manufacturing Defects, Post-Processing, Feedstock, and Microstructure. Mater. Des. 2022, 221, 110874. [Google Scholar] [CrossRef]
- Narasimharaju, S.R.; Zeng, W.; See, T.L.; Zhu, Z.; Scott, P.; Jiang, X.; Lou, S. A Comprehensive Review on Laser Powder Bed Fusion of Steels: Processing, Microstructure, Defects and Control Methods, Mechanical Properties, Current Challenges and Future Trends. J. Manuf. Process. 2022, 75, 375–414. [Google Scholar] [CrossRef]
- Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.D.; Bieler, T.R.; Raabe, D. Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications. Acta Mater. 2010, 58, 1152–1211. [Google Scholar] [CrossRef]
- Wang, H.; Lee, S.Y.; Wang, H.; Woo, W.; Huang, E.-W.; Jain, J.; An, K. On Plastic Anisotropy and Deformation History-Driven Anelasticity of an Extruded Magnesium Alloy. Scr. Mater. 2020, 176, 36–41. [Google Scholar] [CrossRef]
- Jeong, C.U.; Heo, Y.-U.; Choi, J.Y.; Woo, W.; Choi, S.-H. A Study on the Micromechanical Behaviors of Duplex Stainless Steel under Uniaxial Tension Using Ex-Situ Experimentation and the Crystal Plasticity Finite Element Method. Int. J. Plast. 2015, 75, 22–38. [Google Scholar] [CrossRef]
- Li, A.; Hu, W.; Yang, Y.; Li, K.; Tian, H.; Zhan, Z.; Meng, Q. A Microdamage Model for FCC Single Crystals Considering a Mixed Failure Mechanism of Slip and Cleavage. Int. J. Plast. 2024, 173, 103888. [Google Scholar] [CrossRef]
- Tran, M.T.; Hwang, S.-K.; Jo, A.R.; Lee, H.W.; Kim, D.-K. In-Situ EBSD Observation and Simulation of Free Surface Roughening and Ductile Failure in the Ultra-Thin Ferritic Stainless Steel Sheet. Mater. Sci. Eng. A 2023, 883, 145489. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kim, E.-Y.; Han, J.; Woo, W.; Choi, S.-H. Effect of Microstructural Factors on Void Formation by Ferrite/Martensite Interface Decohesion in DP980 Steel under Uniaxial Tension. Int. J. Plast. 2017, 94, 3–23. [Google Scholar] [CrossRef]
- Gao, P.F.; Fei, M.Y.; Zhan, M.; Fu, M.W. Microstructure- and Damage-Nucleation-Based Crystal Plasticity Finite Element Modeling for the Nucleation of Multi-Type Voids during Plastic Deformation of Al Alloys. Int. J. Plast. 2023, 165, 103609. [Google Scholar] [CrossRef]
- Wan, V.V.C.; MacLachlan, D.W.; Dunne, F.P.E. A Stored Energy Criterion for Fatigue Crack Nucleation in Polycrystals. Int. J. Fatigue 2014, 68, 90–102. [Google Scholar] [CrossRef]
- Charmi, A.; Falkenberg, R.; Ávila, L.; Mohr, G.; Sommer, K.; Ulbricht, A.; Sprengel, M.; Saliwan Neumann, R.; Skrotzki, B.; Evans, A. Mechanical Anisotropy of Additively Manufactured Stainless Steel 316L: An Experimental and Numerical Study. Mater. Sci. Eng. A 2021, 799, 140154. [Google Scholar] [CrossRef]
- Motaman, S.A.H.; Roters, F.; Haase, C. Anisotropic Polycrystal Plasticity Due to Microstructural Heterogeneity: A Multi-Scale Experimental and Numerical Study on Additively Manufactured Metallic Materials. Acta Mater. 2020, 185, 340–369. [Google Scholar] [CrossRef]
- van Nuland, T.F.W.; van Dommelen, J.A.W.; Geers, M.G.D. Microstructural Modeling of Anisotropic Plasticity in Large Scale Additively Manufactured 316L Stainless Steel. Mech. Mater. 2021, 153, 103664. [Google Scholar] [CrossRef]
- Huang, Z.; Zeng, G. Microstructure Characterization and Crystal Plastic Finite Element Simulation of Additive Manufacturing 316 L Stainless Steel. J. Phys. Conf. Ser. 2023, 2553, 012073. [Google Scholar] [CrossRef]
- ASTM E8/E8M-16a; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2016.
- Peirce, D.; Asaro, R.J.; Needleman, A. Material Rate Dependence and Localized Deformation in Crystalline Solids. Acta Metall. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
- Asaro, R.J.; Needleman, A. Overview No. 42 Texture Development and Strain Hardening in Rate Dependent Polycrystals. Acta Metall. 1985, 33, 923–953. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, M.-G.; Kang, J.-H.; Oh, C.-S.; Barlat, F. Crystal Plasticity Finite Element Analysis of Ferritic Stainless Steel for Sheet Formability Prediction. Int. J. Plast. 2017, 93, 26–45. [Google Scholar] [CrossRef]
- Korsunsky, A.M.; Dini, D.; Dunne, F.P.E.; Walsh, M.J. Comparative Assessment of Dissipated Energy and Other Fatigue Criteria. Int. J. Fatigue 2007, 29, 1990–1995. [Google Scholar] [CrossRef]
- Wang, H.; Woo, W.; Lee, S.Y.; An, G.; Kim, D.-K. Correlation of Localized Residual Stresses with Ductile Fracture Toughness Using in Situ Neutron Diffraction and Finite Element Modelling. Int. J. Mech. Sci. 2019, 160, 332–342. [Google Scholar] [CrossRef]
- Shamsujjoha, M.; Agnew, S.R.; Fitz-Gerald, J.M.; Moore, W.R.; Newman, T.A. High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained. Metall. Mater. Trans. A 2018, 49, 3011–3027. [Google Scholar] [CrossRef]
- Röttger, A.; Geenen, K.; Windmann, M.; Binner, F.; Theisen, W. Comparison of Microstructure and Mechanical Properties of 316 L Austenitic Steel Processed by Selective Laser Melting with Hot-Isostatic Pressed and Cast Material. Mater. Sci. Eng. A 2016, 678, 365–376. [Google Scholar] [CrossRef]
- Clausen, B.; Lorentzen, T.; Leffers, T. Self-Consistent Modelling of the Plastic Deformation of f.c.c. Polycrystals and Its Implications for Diffraction Measurements of Internal Stresses. Acta Mater. 1998, 46, 3087–3098. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|---|
0.03 | 0.75 | 2.00 | 0.05 | 0.03 | 17.00 | 12.00 | 2.50 | 65.65 |
(MPa) | (MPa) | (MPa) | q | ||
---|---|---|---|---|---|
EA | 1300 | 167 | 356 | 2.5 | 1.4 |
LA | 1300 | 186 | 420 | 2.5 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Lee, H.-W.; Tran, M.T.; Kim, D.-K. Microstructure-Based Modeling of Deformation and Damage Behavior of Extruded and Additively Manufactured 316L Stainless Steels. Materials 2024, 17, 2360. https://doi.org/10.3390/ma17102360
Wang H, Lee H-W, Tran MT, Kim D-K. Microstructure-Based Modeling of Deformation and Damage Behavior of Extruded and Additively Manufactured 316L Stainless Steels. Materials. 2024; 17(10):2360. https://doi.org/10.3390/ma17102360
Chicago/Turabian StyleWang, Huai, Ho-Won Lee, Minh Tien Tran, and Dong-Kyu Kim. 2024. "Microstructure-Based Modeling of Deformation and Damage Behavior of Extruded and Additively Manufactured 316L Stainless Steels" Materials 17, no. 10: 2360. https://doi.org/10.3390/ma17102360
APA StyleWang, H., Lee, H. -W., Tran, M. T., & Kim, D. -K. (2024). Microstructure-Based Modeling of Deformation and Damage Behavior of Extruded and Additively Manufactured 316L Stainless Steels. Materials, 17(10), 2360. https://doi.org/10.3390/ma17102360