Advanced Computational Analysis of Cobalt-Based Superalloys through Crystal Plasticity
Abstract
:1. Introduction
2. Multi-Scale Framework
3. Materials and Methods
3.1. Constitutive Models for the Sub-Grain Level
3.2. Constitutive Models for the Grain Level
3.2.1. Constitutive Model for Cross-Slip Mechanism
3.2.2. Modification of for KW Lock Formation Due to Cross-Slip Mechanism
3.3. Homogenized Constitutive Model from the Sub-Grain Representative Volume Element (RVE) Model
3.4. Modification of for the Effect of Composition
3.5. Constitutive Model for Climb and Glide Mechanism
4. Results and Discussion
4.1. Validation of the Computational Model with Experiments
4.1.1. Composition Effects on Flow Stress
4.1.2. Validation of the Creep Model with Experiments
4.1.3. Effects of Composition on Creep Properties in Cobalt-Based Superalloys
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McLean, M. Nickel-base superalloys: Current status and potential. Philos. Trans. R. Soc. Lond. Ser. Phys. Eng. Sci. 1995, 351, 419–433. [Google Scholar]
- Sugui, T.; Jun, X.; Xiaoming, Z.; Benjiang, Q.; Jianwei, L.; Lili, Y.; Wuxiang, W. Microstructure and creep behavior of FGH95 nickel-base superalloy. Mater. Sci. Eng. A 2011, 528, 2076–2084. [Google Scholar] [CrossRef]
- Tanaka, K.; Ooshima, M.; Tsuno, N.; Sato, A.; Inui, H. Creep deformation of single crystals of new Co–Al–W-based alloys with fcc/L12 two-phase microstructures. Philos. Mag. 2012, 92, 4011–4027. [Google Scholar] [CrossRef]
- Sato, J.; Omori, T.; Oikawa, K.; Ohnuma, I.; Kainuma, R.; Ishida, K. Cobalt-base high-temperature alloys. Science 2006, 312, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Pollock, T.; Dibbern, J.; Tsunekane, M.; Zhu, J.; Suzuki, A. New Co-based γ-γ′ high-temperature alloys. JOM 2010, 62, 58–63. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Titus, M.S.; Suzuki, A.; Pollock, T.M. High temperature creep of new L12-containing cobalt-base superalloys. Superalloys 2012, 12, 823–831. [Google Scholar]
- Titus, M.S.; Suzuki, A.; Pollock, T.M. Creep and directional coarsening in single crystals of new γ-γ′ cobalt-base alloys. Scr. Mater. 2012, 66, 574–577. [Google Scholar] [CrossRef]
- Chatterjee, D.; Hazari, N.; Das, N.; Mitra, R. Microstructure and creep behavior of DMS4-type nickel based superalloy single crystals with orientations near <001> and <011>. Mater. Sci. Eng. A 2010, 528, 604–613. [Google Scholar]
- Cormier, J.; Milhet, X.; Mendez, J. Non-isothermal creep at very high temperature of the nickel-based single crystal superalloy MC2. Acta Mater. 2007, 55, 6250–6259. [Google Scholar] [CrossRef]
- Torster, F.; Baumeister, G.; Albrecht, J.; Lütjering, G.; Helm, D.; Daeubler, M. Influence of grain size and heat treatment on the microstructure and mechanical properties of the nickel-base superalloy U 720 LI. Mater. Sci. Eng. A 1997, 234, 189–192. [Google Scholar] [CrossRef]
- Hong, H.; Kim, I.; Choi, B.; Kim, M.; Jo, C. The effect of grain boundary serration on creep resistance in a wrought nickel-based superalloy. Mater. Sci. Eng. A 2009, 517, 125–131. [Google Scholar] [CrossRef]
- Keshavarz, S.; Ghosh, S.; Reid, A.C.; Langer, S.A. A non-Schmid crystal plasticity finite element approach to multi-scale modeling of nickel-based superalloys. Acta Mater. 2016, 114, 106–115. [Google Scholar] [CrossRef]
- Suzuki, A.; Pollock, T.M. High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys. Acta Mater. 2008, 56, 1288–1297. [Google Scholar] [CrossRef]
- Groh, S.; Marin, E.; Horstemeyer, M.; Zbib, H. Multiscale modeling of the plasticity in an aluminum single crystal. Int. J. Plast. 2009, 25, 1456–1473. [Google Scholar] [CrossRef]
- Segurado, J.; Lebensohn, R.A.; LLorca, J.; Tomé, C.N. Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements. Int. J. Plast. 2012, 28, 124–140. [Google Scholar] [CrossRef]
- Lim, H.; Hale, L.; Zimmerman, J.; Battaile, C.; Weinberger, C. A multi-scale model of dislocation plasticity in α-Fe: Incorporating temperature, strain rate and non-Schmid effects. Int. J. Plast. 2015, 73, 100–118. [Google Scholar] [CrossRef]
- Moghaddam, M.G.; Achuthan, A.; Bednarcyk, B.; Arnold, S.; Pineda, E. A multi-scale computational model using Generalized Method of Cells (GMC) homogenization for multi-phase single crystal metals. Comput. Mater. Sci. 2015, 96, 44–55. [Google Scholar] [CrossRef]
- Zhang, Z.; Khong, J.C.; Koe, B.; Luo, S.; Huang, S.; Qin, L.; Cipiccia, S.; Batey, D.; Bodey, A.J.; Rau, C.; et al. Multiscale characterization of the 3D network structure of metal carbides in a Ni superalloy by synchrotron X-ray microtomography and ptychography. Scr. Mater. 2021, 193, 71–76. [Google Scholar] [CrossRef]
- Ghosh, S.; Anahid, M. Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys, Part 1: Macroscopic anisotropic yield function. Int. J. Plast. 2013, 47, 182–201. [Google Scholar] [CrossRef]
- Anahid, M.; Ghosh, S. Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys, Part 2: Macroscopic probabilistic crack nucleation model. Int. J. Plast. 2013, 48, 111–124. [Google Scholar] [CrossRef]
- Watanabe, I.; Setoyama, D.; Iwata, N.; Nakanishi, K. Characterization of yielding behavior of polycrystalline metals with single crystal plasticity based on representative characteristic length. Int. J. Plast. 2010, 26, 570–585. [Google Scholar] [CrossRef]
- Pollock, T.; Argon, A. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall. Mater. 1992, 40, 1–30. [Google Scholar] [CrossRef]
- Busso, E.; Meissonnier, F.; O’dowd, N. Gradient-dependent deformation of two-phase single crystals. J. Mech. Phys. Solids 2000, 48, 2333–2361. [Google Scholar] [CrossRef]
- Busso, E.; Cheong, K. Length scale effects on the macroscopic behaviour of single and polycrystalline FCC crystals. J. Phys. IV 2001, 11, Pr5-161–Pr5-170. [Google Scholar] [CrossRef]
- Reid, A.C.; Langer, S.A.; Lua, R.C.; Coffman, V.R.; Haan, S.I.; García, R.E. Image-based finite element mesh construction for material microstructures. Comput. Mater. Sci. 2008, 43, 989–999. [Google Scholar] [CrossRef]
- Keshavarz, S.; Campbell, C.E.; Reid, A.C. Multi-Scale Crystal Plasticity Model of Creep Responses in Nickel-Based Superalloys. Materials 2022, 15, 4447. [Google Scholar] [CrossRef]
- Keshavarz, S.; Molaeinia, Z.; Reid, A.; Langer, S. Morphology Dependent Flow Stress in Nickel-Based Superalloys in the Multi-Scale Crystal Plasticity Framework. Crystals 2017, 7, 334. [Google Scholar] [CrossRef]
- Zhu, Z.; Basoalto, H.; Warnken, N.; Reed, R. A model for the creep deformation behaviour of nickel-based single crystal superalloys. Acta Mater. 2012, 60, 4888–4900. [Google Scholar] [CrossRef]
- Miura, S.; Ohkubo, K.; Mohri, T. Mechanical properties of Co-based L12 intermetallic compound Co3 (Al, W). Mater. Trans. 2007, 48, 2403–2408. [Google Scholar] [CrossRef]
- Suzuki, A.; DeNolf, G.C.; Pollock, T.M. Flow stress anomalies in γ/γ′ two-phase Co–Al–W-base alloys. Scr. Mater. 2007, 56, 385–388. [Google Scholar] [CrossRef]
- Heredia, F.; Pope, D. Effect of boron additions on the ductility and fracture behavior of Ni3Al single crystals. Acta Metall. Mater. 1991, 39, 2017–2026. [Google Scholar] [CrossRef]
- Bauer, A.; Neumeier, S.; Pyczak, F.; Singer, R.F.; Göken, M. Creep properties of different γ′-strengthened Co-base superalloys. Mater. Sci. Eng. A 2012, 550, 333–341. [Google Scholar] [CrossRef]
- Pyczak, F.; Bauer, A.; Göken, M.; Neumeier, S.; Lorenz, U.; Oehring, M.; Schell, N.; Schreyer, A.; Stark, A.; Symanzik, F. Plastic deformation mechanisms in a crept L12 hardened Co-base superalloy. Mater. Sci. Eng. A 2013, 571, 13–18. [Google Scholar] [CrossRef]
- Keshavarz, S.; Ghosh, S. Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys. Acta Mater. 2013, 61, 6549–6561. [Google Scholar] [CrossRef]
- Friedel, J. Dislocations: International Series of Monographs on Solid State Physics; Elsevier: Amsterdam, The Netherlands, 2013; Volume 3. [Google Scholar]
- Bocchini, P.J.; Sudbrack, C.K.; Sauza, D.J.; Noebe, R.D.; Seidman, D.N.; Dunand, D.C. Effect of tungsten concentration on microstructures of Co-10Ni-6Al-(0,2,4,6)W-6Ti (at%) cobalt-based superalloys. Mater. Sci. Eng. A 2017, 700, 481–486. [Google Scholar] [CrossRef]
- Shi, L.; Yu, J.; Cui, C.; Sun, X. Effect of Ta additions on microstructure and mechanical properties of a single-crystal Co–Al–W-base alloy. Mater. Lett. 2015, 149, 58–61. [Google Scholar] [CrossRef]
Element | Ta | Ti | Cr |
---|---|---|---|
(MPa) | 170 | 45 | −17 |
(K) | 1100 | 1100 | 1100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keshavarz, S.; Campbell, C.E.; Reid, A.C.E. Advanced Computational Analysis of Cobalt-Based Superalloys through Crystal Plasticity. Materials 2024, 17, 2458. https://doi.org/10.3390/ma17102458
Keshavarz S, Campbell CE, Reid ACE. Advanced Computational Analysis of Cobalt-Based Superalloys through Crystal Plasticity. Materials. 2024; 17(10):2458. https://doi.org/10.3390/ma17102458
Chicago/Turabian StyleKeshavarz, Shahriyar, Carelyn E. Campbell, and Andrew C. E. Reid. 2024. "Advanced Computational Analysis of Cobalt-Based Superalloys through Crystal Plasticity" Materials 17, no. 10: 2458. https://doi.org/10.3390/ma17102458
APA StyleKeshavarz, S., Campbell, C. E., & Reid, A. C. E. (2024). Advanced Computational Analysis of Cobalt-Based Superalloys through Crystal Plasticity. Materials, 17(10), 2458. https://doi.org/10.3390/ma17102458