Microstructural Assessment of Pozzolanic Activity of Ilmenite Mud Waste Compared to Fly Ash in Cement Composites
Abstract
:1. Introduction
- X-ray diffraction (XRD)
- differential thermal analysis (DTA)
- R3 bound water
- mercury intrusion porosimetry (MIP)
- scanning electron microscopy (SEM)
2. Materials and Methods
2.1. R-MUD and FA
2.2. Mortars
2.3. X-ray Diffraction
2.4. Differential Thermal Analysis
2.5. R3 Bound Water Test
2.6. Mercury Intrusion Porosimetry
- macropores: above 10 μm
- large capillary pores: 0.05–10 μm
- small capillary pores: 0.01–0.05 μm
- gel pores: under 0.01 μm
2.7. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. X-ray Diffraction
3.1.1. R-MUD
3.1.2. FA
3.2. Differential Thermal Analysis (DTA)
3.2.1. R-MUD
3.2.2. FA
3.3. R3 Bound Water Test
3.4. Mercury Intrusion Porosimetry (MIP)
3.4.1. R-MUD Mortars
3.4.2. FA Mortars
3.5. Scanning Electron Microscopy
3.5.1. R-MUD Mortars
3.5.2. FA Mortars
4. Conclusions
- R-MUD has a lower content of silicon dioxide and aluminium oxide than fly ash; however, it seems to be more active than FA. This might be caused by the higher content of colloidal silicon dioxide which is not present in fly ash.
- R-MUD is a pozzolanic active material, which seals the microstructure of cement composites more effectively than fly ash.
- The pozzolanic reaction of R-MUD seems to subsist beyond 360 days, unlike fly ash where pozzolanic activity ceases after a year.
- Results of R3 bound water tests proves the pozzolanic activity of R-MUD although differences between results of tests received using other methods needs further investigations as it might be that not all methods are accurate for testing this type of material.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, J.S.; Zhai, V.P.; Pörtner, H.-O.; Roberts, D.; Shukla, E.L.P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; Connors, S.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Comisión Europea, The European Green Deal. Eur. Comm. 2019, 53, 24.
- Mudeme, L. Cement Production and Greenhouse Gas Emission: Implications for Mitigating Climate Change. Doctoral Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2009. [Google Scholar]
- Green Deal. Available online: https://www.construction-products.eu/publications/green-deal/ (accessed on 1 April 2024).
- Keeble, B.R. Report of the World Commission on Environment and Development: Our Common Future. Med. War 1988, 4, 17–25. [Google Scholar] [CrossRef]
- Tavakoli, D.; Hashempour, M.; Heidari, A. Use of waste materials in concrete: A review. Pertanika J. Sci. Technol. 2018, 26, 499–522. [Google Scholar]
- Czarnecki, L. Sustainable concrete; is nanotechnology the future of concrete polymer composites? Adv. Mater. Res. 2013, 687, 3–11. [Google Scholar] [CrossRef]
- Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 2001, 26, 303–329. [Google Scholar] [CrossRef]
- Karthiyaini, S. Physicochemical propertiesof alkali activated fly ash based geopolymer concrete: A review. Int. J. Earth Sci. Eng. 2016, 9, 2419–2426. [Google Scholar]
- Khrunyk, S.; Sanytskyy, M. Environmental impact assessment of alternative fuels co-processing in rotary cement kilns. Inżynieria Ochr. Sr. 2014, 17, 147–155. [Google Scholar]
- Kim, J.; Tae, S.; Kim, R. Theoretical Study on the Production of Environment-Friendly Recycled Cement Using Inorganic Construction Wastes as Secondary Materials in South Korea. Sustainability 2018, 10, 4449. [Google Scholar] [CrossRef]
- Sousa, V.; Bogas, J.A. Comparison of energy consumption and carbon emissions from clinker and recycled cement production. J. Clean. Prod. 2021, 306, 127277. [Google Scholar] [CrossRef]
- Antunes, M.; Santos, R.L.; Pereira, J.; Rocha, P.; Horta, R.B.; Colaço, R. Alternative Clinker Technologies for Reducing Carbon Emissions in Cement Industry: A Critical Review. Materials 2021, 15, 209. [Google Scholar] [CrossRef]
- Hooton, R.D.; Bickley, J.A. Design for durability: The key to improving concrete sustainability. Constr. Build. Mater. 2014, 67, 422–430. [Google Scholar] [CrossRef]
- Aïtcin, P.C. Cements of yesterday and today—concrete of tomorrow. Cem. Concr. Res. 2000, 30, 1349–1359. [Google Scholar] [CrossRef]
- Kim, H.-S.; Park, J.-W.; An, Y.-J.; Bae, J.-S.; Han, C. Activation of Ground Granulated Blast Furnace Slag Cement by Calcined Alunite. Mater. Trans. 2011, 52, 210–218. [Google Scholar] [CrossRef]
- Ho, H.-L.; Huang, R.; Hwang, L.-C.; Lin, W.-T.; Hsu, H.-M. Waste-Based Pervious Concrete for Climate-Resilient Pavements. Materials 2018, 11, 900. [Google Scholar] [CrossRef] [PubMed]
- Naik, T.R. Sustainability of Concrete Construction. Pract. Period. Struct. Des. Constr. 2008, 13, 98–103. [Google Scholar] [CrossRef]
- Journal, K.; Vol, E.; Hussen, S.S. Using of Industrial Waste As a Green Chemical Admixture in Concrete. Kufa J. Eng. 2016, 7, 104–114. [Google Scholar]
- EN 197-5:2021; Cement—Part 5: Portland-Composite Cement CEM II/C-M and Composite Cement CEM VI. European Committee for Standardization: Brussels, Belgium, 2021.
- EN 197-6:2022; Cement—Part 6: Cement with Recycled Building Materials. European Committee for Standardization: Brussels, Belgium, 2022.
- EN 450-1:2012; Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria. European Committee for Standardization: Brussels, Belgium, 2012.
- Ramachandran, V.S.; Paroli, R.M.; Beaudoin, J.J.; Delgado, A.H. Handbook of Thermal Analysis of Construction Materials (Building Materials Series); Noyes Publications: Norwich, NY, USA, 2002; p. 680. [Google Scholar]
- Pacheco-Torgal, F. Introduction to the recycling of construction and demolition waste (CDW). In Handbook of Recycled Concrete and Demolition Waste; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–6. [Google Scholar]
- Czarnecki, L.; Van Gemert, D. Innovation in construction materials engineering versus sustainable development. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 765–771. [Google Scholar] [CrossRef]
- Siddique, R. Utilization of industrial by-products in concrete. Procedia Eng. 2014, 95, 335–347. [Google Scholar] [CrossRef]
- Sahu, K.K.; Alex, T.C.; Mishra, D.; Agrawal, A. An overview on the production of pigment grade titania from titania-rich slag. Waste Manag. Res. 2006, 24, 74–79. [Google Scholar] [CrossRef]
- Titanium Dioxide Market Analysis. Available online: https://www.chemanalyst.com/industry-report/titanium-dioxide-market-599 (accessed on 1 April 2024).
- Chyliński, F.; Bobrowicz, J.; Łukowski, P. Undissolved Ilmenite Mud from TiO2 Production—Waste or a Valuable Addition to Portland Cement Composites? Materials 2020, 13, 3555. [Google Scholar] [CrossRef]
- Bobrowicz, J.; Chyliński, F. The influence of ilmenite mud waste on the hydration process of Portland cement. J. Therm. Anal. Calorim. 2016, 126, 493–498. [Google Scholar] [CrossRef]
- Chyliński, F.; Kuczyński, K.; Łukowski, P. Application of Ilmenite Mud Waste as an Addition to Concrete. Materials 2020, 13, 866. [Google Scholar] [CrossRef] [PubMed]
- Chyliński, F.; Kuczyński, K. Ilmenite mud waste as an additive for frost resistance in sustainable concrete. Materials 2020, 13, 2904. [Google Scholar] [CrossRef] [PubMed]
- Bobrowicz, J.; Chylinski, F. Comparison of pozzolanic activity of ilmenite MUD waste to other pozzolans used as an additive for concrete production. J. Therm. Anal. Calorim. 2020, 143, 2901–2909. [Google Scholar] [CrossRef]
- Chyliński, F. Evaluation of Impact of the Waste Material from the Production of Titanium White on Durability of Mortars and Concretes; Building Research Institute: Warsaw, Poland, 2018. [Google Scholar]
- EN 196-1:2016-07; Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization: Brussels, Belgium, 2016.
- Chyliński, F.; Łukowski, P. Application of the material model to optimize the composition of cement mortar with the addition of waste from the production of titanium white. Przegląd Bud. 2017, 88, 45–49. (In Polish) [Google Scholar]
- Avet, F.; Li, X.; Ben Haha, M.; Bernal, S.A.; Bishnoi, S.; Cizer, Ö.; Cyr, M.; Dolenec, S.; Durdzinski, P.; Haufe, J.; et al. Report of RILEM TC 267-TRM phase 2: Optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materials. Mater. Struct. 2022, 55, 92. [Google Scholar] [CrossRef]
- Londono-Zuluaga, D.; Gholizadeh-Vayghan, A.; Winnefeld, F.; Avet, F.; Ben Haha, M.; Bernal, S.A.; Cizer, Ö.; Cyr, M.; Dolenec, S.; Durdzinski, P.; et al. Report of RILEM TC 267-TRM phase 3: Validation of the R3 reactivity test across a wide range of materials. Mater. Struct. 2022, 55, 142. [Google Scholar] [CrossRef]
- Gomes, C.E.M.; Savastano, H. Study of hygral behavior of NON-asbestos fiber cement made by similar hatschek process. Mater. Res. 2014, 17, 121–129. [Google Scholar] [CrossRef]
- Giergiczny, Z.; Król, A. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites. J. Hazard. Mater. 2008, 160, 247–255. [Google Scholar] [CrossRef]
- Shi, C.; Day, R.L. Pozzolanic reaction in the presence of chemical activators Part II. Reaction products and mechanism. Cem. Concr. Res. 2000, 30, 607–613. [Google Scholar] [CrossRef]
- Donatello, S.; Tyrer, M.; Cheeseman, C.R. Comparison of test methods to assess pozzolanic activity. Cem. Concr. Compos. 2010, 32, 121–127. [Google Scholar] [CrossRef]
- Kramar, S.; Ducman, V.; Tkaczewska, E.; Parhizkar, T.; Najirni, M.; Pourkhorshidi, A.R.; Jafarpour, F.; Hillemeier, B.; Herr, R. Golewski, G.L.; et al. Comparison of test methods to assess pozzolanic activity. Cem. Concr. Compos. 2022, 17, 139–272. [Google Scholar]
- Moropoulou, A.; Bakolas, A.; Aggelakopoulou, E. Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim. Acta 2004, 420, 135–140. [Google Scholar] [CrossRef]
- Rossen, J.E.; Lothenbach, B.; Scrivener, K.L. Composition of C-S-H in pastes with increasing levels of silica fume addition. Cem. Concr. Res. 2015, 75, 14–22. [Google Scholar] [CrossRef]
- Kramar, S.; Ducman, V. Evaluation of ash pozzolanic activity by means of the strength activity index test, frattini test and DTA/TG analysis. Teh. Vjesn. 2018, 25, 1746–1752. [Google Scholar]
- Murzyn, P.; Malata, G.; Wiśniewska, J.; Kapeluszna, E.; Nocuń-Wczelik, W. Characterization of 40-year-old calcium silicate pastes by thermal methods and other techniques. J. Therm. Anal. Calorim. 2019, 138, 4271–4278. [Google Scholar] [CrossRef]
- Rodriguez, E.T.; Garbev, K.; Merz, D.; Black, L.; Richardson, I.G. Thermal stability of C-S-H phases and applicability of Richardson and Groves’ and Richardson C-(A)-S-H(I) models to synthetic C-S-H. Cem. Concr. Res. 2017, 93, 45–56. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 5th ed.; Prentice Hall: Hoboken, NJ, USA, 2011. [Google Scholar]
- Neville, A.M.; Brooks, J.J. Concrete Technology, 2nd ed.; Pearson Education Ltd.: London, UK, 2010. [Google Scholar]
- Diamond, S. Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 2000, 30, 1517–1525. [Google Scholar] [CrossRef]
Material | Constituent Content [%] | Relevant Surface [cm2/g] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Fe2O3 | MgO | Al2O3 | CaO | Na2O | MnO | K2O | P2O5 | SO3 | Cl | ||
R-MUD | 35.07 | 33.05 | 9.65 | 7.26 | 5.53 | 3.09 | 1.10 | 0.53 | 0.26 | 0.01 | 0.98 | – | 8390 |
Fly ash | 51.51 | 1.09 | 8.51 | 2.53 | 25.71 | 3.82 | 1.37 | 0.10 | 2.73 | 0.31 | 0.48 | 0.02 | 4020 |
Cement CEM I 42.5R | 20.06 | – | 3.38 | 0.89 | 4.13 | 64.41 | 0.24 | – | 0.56 | – | 2.97 | 0.07 | 4060 |
Constituent | Mortar R-MUD | Mortar FA |
---|---|---|
cement CEM I 42.5R [g] | 401.4 | 401.4 |
R-MUD/FA [g] | 48.6 | 48.6 |
sand [g] | 1350 | 1350 |
water (water/binder) [g] | 225 (0.5) | 225 (0.5) |
Sample | Bound Water [g/100 g Dried Paste] |
---|---|
R-MUD | 6.12 |
FA | 7.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chyliński, F. Microstructural Assessment of Pozzolanic Activity of Ilmenite Mud Waste Compared to Fly Ash in Cement Composites. Materials 2024, 17, 2483. https://doi.org/10.3390/ma17112483
Chyliński F. Microstructural Assessment of Pozzolanic Activity of Ilmenite Mud Waste Compared to Fly Ash in Cement Composites. Materials. 2024; 17(11):2483. https://doi.org/10.3390/ma17112483
Chicago/Turabian StyleChyliński, Filip. 2024. "Microstructural Assessment of Pozzolanic Activity of Ilmenite Mud Waste Compared to Fly Ash in Cement Composites" Materials 17, no. 11: 2483. https://doi.org/10.3390/ma17112483
APA StyleChyliński, F. (2024). Microstructural Assessment of Pozzolanic Activity of Ilmenite Mud Waste Compared to Fly Ash in Cement Composites. Materials, 17(11), 2483. https://doi.org/10.3390/ma17112483