Express Method for Assessing Performance of Lubricant Compositions Containing Nano-Additives Used for Wheel–Rail Pairs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments on Friction and Wear
2.2. Methodology for the Assessment of Damage from Friction
3. Method for Performance Assessment of Lubricating Compositions Containing Nano-Additives
3.1. Experimental Research Results
3.2. Analysis of the Experimental Results
3.3. Lubricant Composition Performance Evaluation Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, C.; Chen, B.; Cai, Y.; Wang, J. Experimental investigation of high-speed wheel-rail adhesion under large creepage and water conditions. Wear 2024, 540–541 (Suppl. S1), 205254. [Google Scholar] [CrossRef]
- Kowalski, S. The analysis of fretting wear in forced-in joint with the induction-hardened shaft. Tribol. Finn. J. Tribol. 2021, 38, 10–21. [Google Scholar] [CrossRef]
- Kowalski, S.; Pexa, M.; Aleš, Z.; Cedík, J. Failure Analysis and the Evaluation of Forced-in Joint Reliability for Selected Operation Conditions. Coatings 2021, 11, 1305. [Google Scholar] [CrossRef]
- Kowalski, S. The Use of PVD Coatings for Anti-Wear Protection of the Press-In Connection Elements. Coatings 2024, 14, 432. [Google Scholar] [CrossRef]
- Ma, L.; He, C.G.; Zhao, X.J.; Guo, J.; Zhu, Y.; Wang, W.J.; Liu, Q.Y.; Jin, X.S. Study on wear and rolling contact fatigue behaviors of wheel-rail materials under different slip ratio conditions. Wear 2016, 366–367, 13–26. [Google Scholar] [CrossRef]
- Cannon, D.F.; Edel, K.-O.; Grassie, S.L.; Sawley, K. Rail defects: An overview. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 865–887. [Google Scholar] [CrossRef]
- Harris, W.J.; Ebersöhn, W.; Lundgren, J.; Tournay, H.; Zakharov, S. Guidelines to Best Practices for Heavy Haul Railway Operations: Wheel and Rail Interface Issues; International Heavy Haul Association: Virginia Beach, VA, USA, 2001. [Google Scholar]
- Duan, L.; Li, J.; Duan, H. Nanomaterials for lubricating oil application: A review. Friction 2023, 11, 647–684. [Google Scholar] [CrossRef]
- Bukvić, M.; Gajević, S.; Skulić, A.; Savić, S.; Ašonja, A.; Stojanović, B. Tribological Application of Nanocomposite Additives in Industrial Oils. Lubricants 2024, 12, 6. [Google Scholar] [CrossRef]
- Singh, A.; Chauhan, P.; Mamatha, T. A review on tribological performance of lubricants with nanoparticles additives. Mater. Today Proc. 2020, 25, 586–591. [Google Scholar] [CrossRef]
- Ali, Z.A.A.A.; Takhakh, A.M.; Al-Waily, M. A review of use of nanoparticle additives in lubricants to improve its tribological properties. Mater. Today Proc. 2022, 52, 1442–1450. [Google Scholar] [CrossRef]
- Waqas, M.; Zahid, R.; Bhutta, M.U.; Khan, Z.A.; Saeed, A. A Review of Friction Performance of Lubricants with Nano Additives. Materials 2021, 14, 6310. [Google Scholar] [CrossRef]
- Venger, R.; Tmenova, T.; Valensi, F.; Veklich, A.; Cressault, Y.; Boretskij, V. Detailed Investigation of the Electric Discharge Plasma between Copper Electrodes Immersed into Water. Atoms 2017, 5, 40. [Google Scholar] [CrossRef]
- Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245. [Google Scholar] [CrossRef]
- Ealias, A.M.; Saravanakumar, M.P. A review on the classification, characterization, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032019. [Google Scholar]
- Kargin, S.; Artyukh, V.; Ignatovich, I.; Dikareva, V. Development and efficiency assessment of process lubrication for hot forging. IOP Conf. Ser. Earth Environ. Sci. 2017, 90, 012190. [Google Scholar] [CrossRef]
- Warden, R.; Frame, E.; Tedesco, S.J.; Brandt, A.C. Laboratory Based Axle Lubricant Efficiency Evaluation. In Interim Report TFLRF; No. 459; U.S. Army TARDEC Fuel and Lubricants Research Facility: San Antonio, TX, USA, 2014; 34р. [Google Scholar]
- Abramov, A.N.; Semenov, V.I.; Tyulenev, D.G.; Sholom, V.Y.; Valeeva, A.K. Method of choice of lubricants for process of wet drawing brass-coated wires. In Proceedings of the Materials Engineering and BALTTRIB’2001: Proceedings of X-th International Baltic Conference, Jurmala, Latvia, 27–28 September 2001; Riga Technical University, Latvia: Riga, Latvia, 2001; pp. 231–234. [Google Scholar]
- Lewis, R.; Magel, E.; Wang, W.-J.; Olofsson, U.; Lewis, S.; Slatter, T.; Beagles, A. Towards a Standard Approach for Wear Testing of Wheel and Rail Materials. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2017, 231, 760–774. [Google Scholar] [CrossRef]
- Olofsson, U.; Telliskivi, T. Wear, Friction and Plastic Deformation of Two Rail Steels—Full Scale Test and Laboratory Study. Wear 2003, 254, 80–93. [Google Scholar] [CrossRef]
- Polzer, G.; Meissner, F. Grundlagen zu Reibung und Verschleiß; VEB Deutscher Verlag für Grundstoffindustrie Leipzig: Leipzig, Germany, 1983; 340p. [Google Scholar]
- Chichinadze, A.V.; Braun, E.D.; Bushe, N.A. Fundamentals of Tribology (Friction, Wear, Lubrication); Mashinostroeniya: Moscow, Russia, 2001; 664p. [Google Scholar]
- Gromakovskij, D.G.; Belen’kikh, E.V.; Ibatullin, I.D.; Karpov, A.S.; Kovshov, A.G.; Sorokin, A.N.; Kudjurov, L.V.; Torrens, E. Method Evaluating Activation Energy of Thermal-Mechanical Destruction of Lubricants in Progress of Friction. Patent of RF N 2119165, 20 September 1998. [Google Scholar]
- Kosarchuk, V.; Chausov, M.; Pylypenko, A.; Tverdomed, V.; Maruschak, P.; Vasylkiv, V. Increasing Wear Resistance of Heavy-Loaded Friction Pairs by Nanoparticles in Conventional Lubricants: A Proof of Concept. Lubricants 2022, 10, 64. [Google Scholar] [CrossRef]
- ISO 6344-2:2021; Coated Abrasives—Determination and Designation of Grain Size Distribution—Part 2: Macrogrit Sizes P12 to P220. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- AIMOL. Available online: www.aimol.nl (accessed on 18 May 2023).
- Veklich, A.; Lebid, A.; Tmenova, T.; Boretskij, V.; Cressault, Y.; Valensi, F.; Lopatko, K.; Aftandilyants, Y. Plasma assisted generation of micro- and nanoparticles. Plasma Phys. Technol. 2017, 4, 28–31. [Google Scholar] [CrossRef]
- Meng, Y.; Xu, J.; Jin, Z.; Prakash, B.; Hu, Y. A review of recent advances in tribology. Friction 2020, 8, 221–300. [Google Scholar] [CrossRef]
- Sundararajan, G.; Roy, M. Hardness Testing. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, W.R., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 3728–3736. [Google Scholar] [CrossRef]
- Hashemi, S.H. Strength-hardness statistical correlation in API X65 steel. Mater. Sci. Eng. A 2011, 528, 1648–1655. [Google Scholar] [CrossRef]
- Tekkaya, A.E. Improved relationship between Vickers hardness and yield stress for cold formed materials. Steel Res. 2001, 72, 304–310. [Google Scholar] [CrossRef]
- Lebedev, A.; Muzyka, M.R. Technical diagnostics of the material using the LM-hardness method. In Problems of Resource and Safety of Operation of Structures, Buildings and Machines; Institute of Electric Welding named after E.O. Paton National Academy of Sciences of Ukraine: Kiev, Ukraine, 2006; pp. 97–101. [Google Scholar]
- Sakai, T.; Nakajima, M.; Tokaji, K.; Hasegawa, N. Statistical distribution patterns in mechanical and fatigue properties of metallic materials. Mater. Sci. Res. Int. 1997, 3, 63–74. [Google Scholar] [CrossRef]
- Makhutov, N.A. Structural Strength, Resource and Technogenic Safety. Part1: Strength and Resource Criteria; Nauka: Novosibirsk, Russia, 2005. (In Russian) [Google Scholar]
- Lebedev, A.A.; Makovetskiy, I.V.; Muzyka, M.R.; Volchek, N.L.; Shvets, V.P. Evaluation of damage to the material by the dispersion of the characteristics of elasticity and static strength. Strength Mater. 2012, 6, 5–14. [Google Scholar]
- Lokoshchenko, A.M.; Ilyin, A.A.; Mamonov, A.M.; Nazarov, V.V. Analysis of creep and long-term strength of titanium alloy VT6 with pre-embedded hydrogen. Phys. Chem. Mech. Mater. 2008, 5, 98–104. [Google Scholar]
- Lebedev, A.A.; Makovetskiy, I.V.; Muzyka, M.R.; Shvets, V.P. Study of the Processes of Deformation and Damage Accumulation in Steel 10GN2MFA under Low-Cycle Loading. Strength Mater. 2008, 2, 5–10. [Google Scholar] [CrossRef]
- Chausov, M.; Pylypenko, A.; Maruschak, P.; Menou, A. Phenomenological Models and Peculiarities of Evaluating Fatigue Life of Aluminum Alloys Subjected to Dynamic Non-Equilibrium Processes. Metals 2021, 11, 1625. [Google Scholar] [CrossRef]
- Muzyka, M.R.; Shvets, V.P. Determination of stresses and strains in a deformed elastoplastic material by hardness characteristics. Strength Mater. 2014, 4, 84–91. [Google Scholar]
- Muzyka, M.R.; Shvets, V.P. Influence of the type of loading on the process of damage accumulation in the material. Strength Mater. 2014, 1, 130–136. [Google Scholar]
- DSTU 7793:2015; Metal Materials. Determination of the Level of Scattered Damage by LM-Hardness Method. State enterprise Ukrainian Scientific Research and Training Center for Problems of Standardization, Certification and Quality: Kyiv, Ukraine, 2016; 15p. (In Ukrainian)
- Gumbel, E.J. Statistical Theory of Extreme Values and Some Practical Applications: A Series of Lectures; US Government Printing Office: Washington, DC, USA, 1954; Volume 33, 472p.
- Padgurskas, J.; Rukuiza, R.; Prosycevas, I.; Kreivaitis, R. Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol. Int. 2013, 60, 224–232. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, C.; Hwang, Y.; Park, M.; Lee, J.; Choi, C.; Jung, M. Tribological behavior of copper nanoparticles as additives in oil. Curr. Appl. Phys. 2009, 9, e124–e127. [Google Scholar] [CrossRef]
- Jatti, V.S.; Singh, T.P. Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. J. Mech. Sci. Technol. 2015, 29, 793–798. [Google Scholar] [CrossRef]
- Tarasov, S.Y.; Belyaev, S.A.; Lerner, M.I. Wear Resistance of Structural Steel in Lubricants Bearing Metal Nanopowders. Met. Sci. Heat Treat. 2005, 47, 560–565. [Google Scholar] [CrossRef]
- Tarasov, S.; Belyaev, S. Alloying contact zones by metallic nanopowders in sliding wear. Wear 2004, 257, 523–530. [Google Scholar] [CrossRef]
- Borda, F.L.G.; de Oliveira, S.J.R.; Lazaro, L.M.S.M.; Leiróz, A.J.K. Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles. Tribol. Int. 2018, 117, 52–58. [Google Scholar] [CrossRef]
- Ghaednia, H.; Jackson, R.L. The effect of nanoparticles on the real area of contact, friction and wear. J. Tribol. 2013, 135, 041603. [Google Scholar] [CrossRef]
Materials | Chemical Composition (In Terms of Main Components) | , GPa | , MPa | , MPa |
---|---|---|---|---|
Rail steel | C—0.57%, Si—0.32%, Mn—0.94%, Fe—base | 211 | 740 | 920 |
Industrial steel | C—0.18%, Si—0.19%, Mn—0.41%, Cr—0.05%, Fe—base | 210 | 250 | 435 |
Wheel steel | C—0.58%, Si—0.34%, Mn—0.76%, Fe—base | 212 | 845 | 985 |
M2 copper | Fe—0.04%, Ni—0.08%, Sn—0.02, Cu—base | 117 | 116 | 210 |
MA2 magnesium alloy | Al—4.32%, Mn—0.32%, Zn—1.16%, Mg—base | 48.8 | 135 | 230 |
Al-Mn alloy | Mn—1.24%, Si—0.26%, Fe—0.18%, Cu—0.09, Al—base | 70.5 | 141 | 224 |
Sample Material | Lubricant Composition | ||
---|---|---|---|
Pure Oil | No. 1 | No. 2–No. 6 | |
Rail steel | + | + | − |
Industrial steel | + | − | + |
Sample Material | Friction Mode, Lubricating Composition Number | Maximum Wear | Initial Coefficient of Friction | Relative Coefficient of Friction | Variation in Mean Hardness | Variation in Homogeneity Coefficient |
---|---|---|---|---|---|---|
, mm | , % | , % | ||||
Rail steel | Pure oil | 0.08 | 0.22 | +9.8 | +31 | |
No. 1 | <0.001 | 0.29 | +14.7 | +29 | ||
Industrial steel | Pure oil | 0.095 | 0.35 | +13.9 | +34 | |
No. 2 | 0.084 | 0.26 | +1.3 | +58 | ||
No. 3 | 0.23 | 0.22 | +4.2 | +63 | ||
No. 4 | 0.0015 | 0.22 | +31.6 | +32 | ||
No. 5 | 0.001 | 0.35 | +16.4 | +32 | ||
No. 6 | 0.04 | 0.25 | +7.3 | +33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosarchuk, V.; Chausov, M.; Tverdomed, V.; Lopatko, K.; Lukoševičius, V. Express Method for Assessing Performance of Lubricant Compositions Containing Nano-Additives Used for Wheel–Rail Pairs. Materials 2024, 17, 2499. https://doi.org/10.3390/ma17112499
Kosarchuk V, Chausov M, Tverdomed V, Lopatko K, Lukoševičius V. Express Method for Assessing Performance of Lubricant Compositions Containing Nano-Additives Used for Wheel–Rail Pairs. Materials. 2024; 17(11):2499. https://doi.org/10.3390/ma17112499
Chicago/Turabian StyleKosarchuk, Valerii, Mykola Chausov, Volodymyr Tverdomed, Kostyantyn Lopatko, and Vaidas Lukoševičius. 2024. "Express Method for Assessing Performance of Lubricant Compositions Containing Nano-Additives Used for Wheel–Rail Pairs" Materials 17, no. 11: 2499. https://doi.org/10.3390/ma17112499
APA StyleKosarchuk, V., Chausov, M., Tverdomed, V., Lopatko, K., & Lukoševičius, V. (2024). Express Method for Assessing Performance of Lubricant Compositions Containing Nano-Additives Used for Wheel–Rail Pairs. Materials, 17(11), 2499. https://doi.org/10.3390/ma17112499