Effect of the Atmospheric Plasma Treatment Parameters on the Surface and Mechanical Properties of Carbon Fabric
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Test
2.2.1. Atmospheric Pressure Plasma Jet Treatment
2.2.2. Optical Emission Spectroscopy
2.2.3. Fourier Transform Infrared-Attenuated Total Reflection and Raman Spectroscopy
2.2.4. X-ray Photoelectron Spectroscopy Characterization
2.2.5. Digital Image Correlation Preparation, Setup and Crack Monitoring Code
2.2.6. Fracture Toughness
2.2.7. Flexural Test
3. Results and Discussion
3.1. Surface Chemical Characterization
3.1.1. Optical Emission Spectroscopy
3.1.2. Fourier Transform Infrared-Attenuated Total Reflection and Raman Spectroscopy
3.1.3. Micro-Raman
3.1.4. X-ray Photoelectron Spectroscopy
3.2. Mechanical Characterization
3.2.1. Fracture Toughness GIC–Double Cantilever Beam Test
3.2.2. Fracture Toughness GIIC–End-Notched Flexure Test
3.2.3. Flexural Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, J.; Njuguna, J. 1—An introduction to lightweight composite materials and their use in transport structures. In Lightweight Composite Structures in Transport; Njuguna, J., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 3–34. [Google Scholar]
- Sharma, M.; Gao, S.; Mäder, E.; Sharma, H.; Wei, L.Y.; Bijwe, J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014, 102, 35–50. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J. Surface treatment of carbon fibers—A review. Procedia Technol. 2014, 14, 505–512. [Google Scholar] [CrossRef]
- Liou, Y.-D.; Chau, K.-H.; Hui, C.-Y.; He, J.-L.; Lam, Y.-L.; Kan, C.-W. An Analysis of Effect of CO2 Laser Treatment on Carbon Fibre Fabric. Coatings 2018, 8, 178. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, Y.; Zhang, C.; Chen, G. Influence of rare earth treatment on interfacial properties of carbon fiber/epoxy composites. Mater. Sci. Eng. A 2007, 444, 170–177. [Google Scholar] [CrossRef]
- Ebnesajjad, S.; Landrock, A.H. Chapter 3—Material surface preparation techniques. In Adhesive Technology Handbook, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 35–66. [Google Scholar]
- Tiwari, S.; Sharma, M.; Panier, S.; Bijwe, J. Influence of cold remote nitrogen oxygen plasma treatment on carbon fabric and its composites with specialty polymers. J. Mater. Sci. 2011, 46, 964–974. [Google Scholar] [CrossRef]
- Jang, J.; Kim, H. Improvement of carbon fiber/PEEK hybrid fabric composites using plasma treatment. Polym. Compos. 1997, 18, 125–132. [Google Scholar] [CrossRef]
- Ceregatti, T.; Kunicki, L.; Biaggio, S.R.; Fontana, L.C.; Dalmolin, C. N2–H2 plasma functionalization of carbon fiber fabric for polyaniline grafting. Plasma Process Polym. 2020, 17, e1900166. [Google Scholar] [CrossRef]
- ASTM D5528/D5528M—21; Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. Standards, ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D7905/D7905M—19; Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. Standards, ASTM International: West Conshohocken, PA, USA, 2019.
- Novotná, J.; Kormunda, M.; Perner, J.; Tomková, B. Comparison of the influence of Two Types of Plasma Treatment of Short Carbon Fibers on Mechanical Properties of Epoxy Composites Filled with These Treated Fibers. Materials 2022, 15, 6290. [Google Scholar] [CrossRef]
- Zaldivar, R.J.; Kim, H.I.; Steckel, G.L.; Nokes, J.P.; Morgan, B.A. Effect of Processing Parameter Changes on the Adhesion of Plasma-treated Carbon Fiber Reinforced Epoxy Composites. J. Compos. Mater. 2010, 44, 1435–1453. [Google Scholar] [CrossRef]
- Ortiz-Ortega, E.; Hosseini, S.; Martinez-Chapa, S.O.; Madou, M.J. Aging of Plasma-activated Carbon Surfaces: Challenges and Opportunities. Appl. Surf. Sci. 2021, 565, 150362. [Google Scholar] [CrossRef]
- 210 g ProFinish 2 x 2 Twill 3k Carbon Fibre Cloth (1000 mm). Available online: https://www.easycomposites.co.uk/200g-profinish-coated-22-twill-3k-carbon-fibre-cloth (accessed on 18 April 2024).
- Boursier Niutta, C.; Ciardiello, R.; Tridello, A.; Paolino, D.S. Epoxy and Bio-Based Epoxy Carbon Fiber Twill Composites: Comparison of the Quasi-Static Properties. Materials 2023, 16, 1601. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.A.; Orteu, J.J.; Schreier, H. Image Correlation for Shape, Motion and Deformation Measurement: Basic Concepts, Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Correlated Solutions. Available online: https://www.correlatedsolutions.com/vic-3d/ (accessed on 18 April 2024).
- ASTM D790—17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. Standards, ASTM International: West Conshohocken, PA, USA, 2017.
- Rathore, V.; Nema, S.K. Optimization of process parameters to generate plasma activated water and study of physicochemical properties of plasma activated solutions at optimum condition. J. Appl. Phys. 2021, 129, 084901. [Google Scholar] [CrossRef]
- Park, Y.B.; Rhee, S.W. Bulk and interface properties of low-temperature silicon nitride films deposited by remote plasma enhanced chemical vapor deposition. J. Mater. Sci. Mater. Electron. 2001, 12, 515–522. [Google Scholar] [CrossRef]
- Hsu, C.C.; Yang, Y.J. The Increase of the Jet Size of an Atmospheric-Pressure Plasma Jet by Ambient Air Control. Plasma Sci. 2010, 38, 496–499. [Google Scholar]
- Available online: https://www.shimadzu.it/labsolutions-ir (accessed on 18 April 2024).
- Terekhov, I.V.; Chistyakov, E.M. Binders used for the manufacturing of composite materials by liquid composite molding. Polymers 2022, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Ciardiello, R.; D’Angelo, D.; Cagna, L.; Croce, A.; Paolino, D.S. Effects of plasma treatments of polypropylene adhesive joints used in the automotive industry. Proc. Inst. Mech. Eng. Part C J. Mech. Sci. 2022, 236, 6204–6218. [Google Scholar] [CrossRef]
- Das, T.K.; Ghosh, P.; Das, N.C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review. Adv. Compos. Hybrid Mater. 2019, 2, 214:233. [Google Scholar] [CrossRef]
- Tuschel, D. Stress, strain and Raman spectroscopy. Spectroscopy 2019, 34, 10–21. [Google Scholar]
- He, J.; Zou, C.; Zhao, J.; Xi, J.; She, Y.; Ren, M.; Xu, Y. Influence of Raman Spectroscopy Test Conditions on the Results of Carbon Chemical Structure of Chars. Energies 2022, 15, 5627. [Google Scholar] [CrossRef]
- Li, Z.; Deng, L.; Kinloch, I.A.; Young, R.J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Prog. Mater. Sci. 2023, 135, 101089. [Google Scholar] [CrossRef]
- Gravis, D.; Moisan, S.; Poncin-Epaillard, F. Surface characterization of plasma-modified carbon fiber: Correlation between surface chemistry and morphology of the single strand. Surf. Interfaces 2020, 21, 100731. [Google Scholar] [CrossRef]
- Jin, S.; Nie, L.; Zhou, R.; Luo, J.; Lu, X. An Ionization-Driven Air Plasma Jet. Front. Phys. 2022, 10, 928402. [Google Scholar] [CrossRef]
- Gardella, J.A.; Ferguson, S.A.; Chin, R.L. π*←π Shakeup Satellites for the Analysis of Structure and Bonding in Aromatic Polymers by X-Ray Photoelectron Spectroscopy. Appl. Spectrosc. 1986, 40, 224–232. [Google Scholar] [CrossRef]
- Sridharan, S. Delamination Behaviour of Composites; Woodhead Publishing Limited: Sawston, UK, 2008; pp. 281–305. [Google Scholar]
IB2 | |
---|---|
Tensile strength [MPa] | 65.0 |
Flexural strength [MPa] | 107.0 |
Flexural modulus [MPa] | 2.8 |
Elongation at Break [%] | 5.3 |
Process Gas | Power [W] | Distance Jet-Sample [mm] | Jet Speed [mm/s] | Gas Flow Rate [L/min] | Reference Voltage [%] | Plasma Voltage [V] | Plasma Intensity/Frequency [kHz] |
---|---|---|---|---|---|---|---|
N2 | 660 | 12 | 25 | 31 | 100 | 334 | 25 |
N2/H2 | 810 | 16 | 25 | 31 | 100 | 334 | 25 |
Peak Shift | D1 [cm−1] | G [cm−1] | D1–Shift | G–Shift |
---|---|---|---|---|
NT | 1376.9 | 1589.9 | - | - |
N2 | 1371.7 | 1592.0 | - | - |
NT → N2 | - | - | −5.2 | +2.1 |
NT | 1376.9 | 1589.9 | ||
N2/H2 | 1379.3 | 1586.1 | ||
NT → N2/H2 | +2.4 | −3.8 |
C1s [%] | O1s [%] | O/C | |
---|---|---|---|
NT | 81.1 | 18.9 | 0.23 |
N2 | 74.1 | 25.9 | 0.35 |
N2/H2 | 87.8 | 12.2 | 0.14 |
NT | N2 | N2/H2 | |
---|---|---|---|
C1s | C-C (284.56 eV, 51.13%) | C-C (284.70 eV, 70.04%) | C-C (284.67 eV, 50.83%) |
C-O-C/C-OH (286.20 eV, 48.87%) | C-O-C/C-OH (286.36 eV, 17.29%) | C-O-C/C-OH (285.72 eV, 27.69%) | |
C=O (288.23 eV, 7.55%) | C=O (287.21 eV, 6.64%) | ||
COC=O/HOC=O (289.77 eV, 4.32%) | COC=O/HOC=O (288.63 eV, 6.83%) | ||
π-π (292.34 eV, 0.79%) | π-π (291.86 eV, 8.01%) | ||
O1s | C-O (532.96 eV, 100.00%) | C-O (532.48 eV, 55.79%) | C-O (532.73 eV, 67.15%) |
C=O (531.38 eV, 32.24%) | C=O (530.85 eV, 19.58%) | ||
COOH (533.74 eV, 11.97%) | COOH (534.92 eV, 13.28%) |
Average | Pmax [N] | GIC a0 [J/m2] | GIC ai [J/m2] |
---|---|---|---|
NT | 40.1 (2.0) | 430.1 (28.8) | 546.0 (41.6) |
N2 | 33.3 (1.7) | 355.6 (63.2) | 379.7 (42.9) |
N2/H2 | 45.8 (1.1) | 444.1 (24.1) | 539.7 (26.6) |
%GQ NT | %GQ N2 | %GQ N2/H2 | |
---|---|---|---|
NPC (a0 = 20 mm) | 17.8% (2.0) | 18.8% (2.9) | 26.0% (3.9) |
NPC (a0 = 40 mm) | 22.6% (3.9) | 23.3% (7.6) | 27.5% (8.6) |
PC (a0 = 20 mm) | 16.7% (0.7) | 17.7% (3.3) | 25.4% (3.7) |
PC (a0 = 40 mm) | 18.5% (3.5) | 25.0% (6.4) | 29.0% (1.6) |
Sample | Test | Pmax [N] | GIIC a0 [J/m2] |
---|---|---|---|
NT | PC | 504.5 (9.2) | 1420.5 (36.0) |
N2 | PC | 467.8 (34.9) | 1309.7 (75.3) |
N2/H2 | PC | 505.8 (56.0) | 1649.4 (133.6) |
Average | σfmax [MPa] | Eb [MPa] |
---|---|---|
NT | 719.0 (9.15) | 45.2 (2.2) |
N2 | 744.6 (26.5) | 47.3 (2.8) |
N2/H2 | 754.3 (42.4) | 46.6 (2.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampino, S.; Ciardiello, R.; D’Angelo, D.; Cagna, L.; Paolino, D.S. Effect of the Atmospheric Plasma Treatment Parameters on the Surface and Mechanical Properties of Carbon Fabric. Materials 2024, 17, 2547. https://doi.org/10.3390/ma17112547
Sampino S, Ciardiello R, D’Angelo D, Cagna L, Paolino DS. Effect of the Atmospheric Plasma Treatment Parameters on the Surface and Mechanical Properties of Carbon Fabric. Materials. 2024; 17(11):2547. https://doi.org/10.3390/ma17112547
Chicago/Turabian StyleSampino, Samuele, Raffaele Ciardiello, Domenico D’Angelo, Laura Cagna, and Davide Salvatore Paolino. 2024. "Effect of the Atmospheric Plasma Treatment Parameters on the Surface and Mechanical Properties of Carbon Fabric" Materials 17, no. 11: 2547. https://doi.org/10.3390/ma17112547
APA StyleSampino, S., Ciardiello, R., D’Angelo, D., Cagna, L., & Paolino, D. S. (2024). Effect of the Atmospheric Plasma Treatment Parameters on the Surface and Mechanical Properties of Carbon Fabric. Materials, 17(11), 2547. https://doi.org/10.3390/ma17112547