Influence of Surface Preparation of Aluminum Alloy AW-5754 and Stainless Steel X5CRNI18-10 on the Properties of Bonded Joints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adherends
2.2. Surface Preparation
2.3. Adhesives
2.4. Microscopic Analysis of the Surface Topography Prepared for Bonding
2.5. Contact Angle Measurement
2.6. Strength Test
2.7. Analysis of the Fractured Bonding Surfaces
3. Results and Discussion
3.1. Analysis of Surface Topography Prepared for Bonding
3.2. Analysis of Surface Roughness
3.3. Wettability
3.4. Tensile Lap-Shear Strength
3.5. Failures Mode Surface
4. Conclusions
- The removal of surface impurities and the uniform development of the bonding surface were associated with a higher strength of the bonded joint as well as good wetting and adsorption of the adhesive.
- Laser cleaning as a surface preparation for bonding resulted in maximum shear strength of the bonded joint (an increase over hand sanding and laser texturing), while the most suitable surface preparation for aluminum alloy and stainless steel joints was preparation with P180 sandpaper for all adhesives. Slightly better results were achieved with laser texturing for stainless steel joints for SikaPower®-492 G adhesive.
- The application of SikaPower®-880 2C epoxy adhesive for bonding materials showed optimal results for all preparations and materials, with results showing that adhesive 880 was significantly more sensitive to the surface preparation method, having the highest shear strength and the highest percentage of cohesive failure for both materials.
- Using the same surface preparation methods and adhesives, X5CrNi18-10 stainless steel-bonded joints had 16% to 40% higher strength than EN AW-5754 aluminum alloy joints, indicating that choosing the right surface preparation methods with appropriate surface roughness can improve the strength of bonded joints.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebnesajjad, S. Adhesives Technology Handbook, 2nd ed.; William Andrew Inc.: Norwich, NY, USA, 2008; pp. 1–17. [Google Scholar]
- Petrie, E.M. Handbook of Adhesives and Sealants; McGraw-Hill Companies: New York, NY, USA, 2000; pp. 1–48. [Google Scholar]
- Marques, C.A.; Mocanu, A.; Tomić, Z.N.; Balos, S.; Stammen, E.; Lundevall, A.; Abrahami, S.T.; Günther, R.; de Kok, J.M.M.; de Freitas, S.T. Review on Adhesives and Surface Treatments for Structural Applications: Recent Developments on Sustainability and Implementation for Metal and Composite Substrates. Materials 2020, 13, 5590. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.M.; Ferreira, F.; Abreu, S.M.; Matos, J.E.; Durao, L.M.P. Correlation of drilling damage with mechanical strength: A geometrical approach. Compos. Struct. 2017, 181, 306–314. [Google Scholar] [CrossRef]
- Kuczmaszewski, J. Fundamentals of Metal-Metal Adhesive Joint Design; Lublin University of Technology, Polish Academy of Sciences: Lublin, Poland, 2006; pp. 9–88. [Google Scholar]
- Hosseinabadi, O.F.; Khedmati, M.R. A review on ultimate strength of aluminium structural elements and systems for marine applications. Ocean Eng. 2021, 232, 109153. [Google Scholar] [CrossRef]
- Brockmann, W.; Gei, P.L.; Klingen, J.; Schrder, B.; Mikhail, B. Adhesive Bonding: Materials, Applications and Technology; Wiley: Hoboken, NY, USA, 2009. [Google Scholar]
- Pizzi, A.; Mittal, K.L. Handbook of Adhesive Technology; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ebnesajjad, S.; Ebnesajjad, C. Surface Treatment of Materials for Adhesive Bonding, 2nd ed.; William Andrew Inc.: Norwich, NY, USA, 2013. [Google Scholar]
- Yudhanto, A.; Alfano, M.; Lubineau, G. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review. Compos. A-Appl. Sci. Manuf. 2021, 147, 106443. [Google Scholar] [CrossRef]
- Rudawska, A. Surface Treatment in Bonding Technology; Academic Press: London, UK, 2019. [Google Scholar]
- Boutar, Y.; Naïmi, S.; Mezlini, S.; Sik Ali, M.B. Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications. Int. J. Adhes. Adhes. 2016, 67, 38–43. [Google Scholar] [CrossRef]
- Rudawska, A. Selected aspects of the effect of mechanical treatment on surface roughness and adhesive joint strength of steel sheets. Int. J. Adhes. Adhes. 2014, 50, 235–243. [Google Scholar] [CrossRef]
- Shi, J.; Pries, H.; Stammen, E.; Dilger, K. Chemical pretreatment and adhesive bonding properties of high-pressure die cast aluminum alloy: AlSi10MnMg. Int. J. Adhes. Adhes. 2015, 61, 112–121. [Google Scholar] [CrossRef]
- Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Gallanta, D.; Eskandariana, M. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Appl. Surf. Sci. 2012, 261, 742–748. [Google Scholar] [CrossRef]
- Jeenjitkaew, C.; Luklinska, Z.; Guild, F. Morphology and surface chemistry of kissing bonds in adhesive joints produced by surface contamination. Int. J. Adhes. Adhes. 2010, 30, 643–653. [Google Scholar] [CrossRef]
- Bjørgum, A.; Lapique, F.; Walmsley, J.; Redfird, K. Anodising as pre-treatment for structural bonding. Int. J. Adhes. Adhes. 2003, 23, 401–412. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhao, X.S.; Zuo, Y.; Xiong, J.P. The bonding strength and corrosion resistance of aluminium alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. Surf. Coat. Technol. 2008, 202, 3149–3156. [Google Scholar] [CrossRef]
- Bhatnagar, N. Plasma Surface Treatment to Enhance Adhesive Bonding. In Handbook of Adhesive Technology, 3rd ed.; Pizzi, A., Mittal, K.L., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 67–95. [Google Scholar]
- Dong, X.; Liu, J.; Hao, H.; Xue, Y.; Xu, L. Effects of Different Surface Treatment Processes on Bonding Properties of Aluminum Alloys under Full Temperature Field Environment. Crystals 2023, 13, 1240. [Google Scholar] [CrossRef]
- Maressa, P.; Anodio, L.; Bernasconi, A.; Demir, A.G.; Previtali, B. Effect of Surface Texture on the Adhesion Performance of Laser Treated Ti6Al4V Alloy. J. Adhes. 2015, 91, 518–537. [Google Scholar] [CrossRef]
- Fischer, F.; Kreling, S.; Gäbler, F.; Delmdahl, R. Using excimer lasers to clean CFRP prior to adhesive bonding. Reinf. Plast. 2013, 57, 43–46. [Google Scholar] [CrossRef]
- Bénard, Q.; Fois, M.; Grisel, M.; Laurens, P. Surface treatment of carbon/epoxy composites with an excimer laser beam. Int. J. Adhes. Adhes. 2006, 26, 534–549. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; Ferreira, N.M.A.J.; Richter-Trummer, V.; Marques, E.A.S. Effect of grooves on the strength of adhesively bonded joints. Int. J. Adh. Adhes. 2010, 30, 735–743. [Google Scholar] [CrossRef]
- Wasserbauer, J.; Pikner, J. Surface pre-treatment of aluminum alloys improving surface adhesive properties. In Proceedings of the 28th International Conference on Metallurgy and Materials, Brno, Czech Republic, 22–24 May 2019; pp. 1186–1191. [Google Scholar]
- Islam, M.S.; Tong, L.; Falzon, P.J. Influence of metal surface preparation on its surface profile, contact angle, surface energy and adhesion with glass fibre prepreg. Int. J. Adhes. Adhes. 2014, 51, 32–41. [Google Scholar] [CrossRef]
- Safari, A.; Farahani, M.; Ghabezi, P. Experimental study on the influences of different surface treatment processes and adhesive type on the aluminum adhesive-bonded joint strength. Mech. Based Des. Struct. Mach. 2020. [Google Scholar] [CrossRef]
- Rudawska, A.; Miturska-Barańska, I.; Doluk, E. Influence of Surface Treatment on Steel Adhesive Joints Strength-Varnish Coats. Materials 2021, 14, 6938. [Google Scholar] [CrossRef]
- Leena, K.; Athira, K.K.; Bhuvaneswari, S.; Suraj, S.; Lakshmana Rao, V. Effect of surface pre-treatment on surface characteristics and adhesive bond strength of aluminium alloy. Int. J. Adhes. Adhes. 2016, 70, 265–270. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Ulbrich, D.; Jósko, M.; Mańczak, R. Influence of surface preparation of glued parts on strength of joint. J. Res. Appl. Agric. Eng. 2016, 61, 41–43. [Google Scholar]
- Budhe, S.; Ghumatkar, A.; Birajdar, N.; Banea, M.D. Effect of surface roughness using different adherend materials on the adhesive bond strength. Appl. Adhes. Sci. 2015, 3, 1–10. [Google Scholar] [CrossRef]
- Łyczkowska, K.; Miara, D.; Rams, B.; Adamiec, J.; Baluch, K. The Influence of MSR-B Mg Alloy Surface Preparation on Bonding Properties. Materials 2023, 16, 3887. [Google Scholar] [CrossRef] [PubMed]
- Dillard, A.D. Adhesive Bonding: Science, Technology and Applications; Woodhead Publishing Limited: Cambridge, UK, 2010; pp. 185–230. [Google Scholar]
- Brockmann, W. Steel adherends. In Durability of Structural Adhesives; Kinloch, A.J., Ed.; Elsevier Applied Science: London, UK, 1983; Chapter 7; p. 306. [Google Scholar]
- Bardis, J.; Kedward, K. Effects of Surface Preparation on the Long-Term Durability of Adhesively Bonded Composite Joints; Final Report DOT/FAA/AR-03/53; U.S. Department of Transportation Federal Aviation Administration: Washington, DC, USA, 2004. [Google Scholar]
- Mazza, J.J.; Avram, J.B.; Kuhbander, R.J. Grit-Blast/Silane (GBS) Aluminum Surface Preparation for Structural Adhesive Bonding; WL-TR-94-4111; Materials and Manufacturing Directorate, Air Force Research Laboratory, Air Force Material Command, Wright-Patterson Air Force Base: Montgomery, OH, USA, 2003. [Google Scholar]
- Rotella, G.; Alfano, M.; Schiefer, T.; Jansen, I. Enhancement of static strength and long term durability of steel/epoxy joints through a fiber laser surface pre-treatment. Int. J. Adhes. Adhes. 2015, 63, 87–95. [Google Scholar] [CrossRef]
- Luo, J.; Liu, J.; Xia, H.; Ao, X.; Yin, H.; Guo, L. Surface Treatments for Enhancing the Bonding Strength of Aluminum Alloy Joints. Materials 2023, 16, 5674. [Google Scholar] [CrossRef] [PubMed]
- Rechner, R.; Jansen, I.; Beyer, E. Influence on the strength and aging resistance of aluminium joints by laser pre-treatment and surface modification. Int. J. Adhes. Adhes. 2010, 30, 595–601. [Google Scholar] [CrossRef]
- Mandolfino, C.; Lertora, E.; Genna, S.; Leone, C.; Gambaro, C. Effect of laser and plasma surface cleaning on mechanical properties of adhesive bonded joints. Procedia CIRP 2015, 33, 458–463. [Google Scholar] [CrossRef]
- EN 1465; Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. European Standard: Brussels, Belgium, 2009.
- Feng, Z.; Zhao, H.; Tan, C.; Zhu, B.; Xia, F.; Wang, Q.; Chen, B.; Song, X. Effect of laser texturing on the surface characteristics and bonding property of 30CrMnSiA steel adhesive joints. J. Manuf. Process. 2019, 47, 219–228. [Google Scholar] [CrossRef]
- Min, J.; Wan, H.; Carlson, B.E.; Lin, J.; Sun, C. Application of laser ablation in adhesive bonding of metallic materials: A review. Opt. Laser Technol. 2020, 128, 106188. [Google Scholar] [CrossRef]
- Ahuir-Torres, J.I.; Arenas, M.A.; Perrie, W.; Dearden, G.; de Damborenea, J. Surface texturing of aluminium alloy AA2024-T3 by picosecond laser: Effect on wettability and corrosion properties. Surf. Coat. Technol. 2017, 321, 279–291. [Google Scholar] [CrossRef]
- API-SikaPower®-880, Material Card; Sika Services AG: Zurich, Switzerland, 2022.
- API-SikaPower®-492 G. Material Card; Sika Services AG: Zurich, Switzerland, 2022.
- Provisional Product Data Sheet-SikaFast®-580; Sika Services AG: Zurich, Switzerland, 2022.
- ISO 4587; Adhesive Lap—Shear Strength of Rigid-to-Rigid Bonded Assemblies. ISO: Geneva, Switzerland, 2003.
- Yang, C.; Mei, X.; Tian, Y.; Zhang, D.; Li, Y.; Liu, X. Modification of wettability property of titanium by laser texturing. Int. J. Adv. Manuf. Technol. 2016, 87, 1663–1670. [Google Scholar] [CrossRef]
- Hadžić, A.; Može, M.; Zupančič, M.; Golobič, I. Superbiphilic Laser-Microengineered Surfaces with A Self-Assembled Monolayer Coating for Exceptional Boiling Performance. Adv. Funct. Mater. 2023, 34, 2310662. [Google Scholar] [CrossRef]
- Može, M.; Zupančič, M.; Steinbücher, M.; Golobič, I.; Gjerkeš, H. Nanosecond Laser-Textured Copper Surfaces Hydrophobized with Self-Assembled Monolayers for Enhanced Pool Boiling Heat Transfer. Nanomaterials 2022, 12, 4032. [Google Scholar] [CrossRef] [PubMed]
- ISO 10365; Adhesives—Designation of Main Failure Patterns. ISO: Geneva, Switzerland, 2022.
Materials | Chemical Components (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
EN AW-5754 | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | other | Al |
0.26 | 0.26 | 0.04 | 0.25 | 2.81 | 0.04 | 0.03 | 0.01 | 0.15 | Balance | |
X5CrNi18-10 | C | Cr | Ni | Mn | Si | Cu | N | P | S | Fe |
0.026 | 18.17 | 8.05 | 1.28 | 0.34 | 0.27 | 0.063 | 0.024 | 0.001 | Balance | |
Materials | Mechanical Properties | |||||||||
Yield Strength (MPa) | Tensile Strength (MPa) | Elongation to Break (%) | Module of Elasticity (GPa) | |||||||
EN AW-5754 | 180 | 236 | 16.5 | 70 | ||||||
X5CrNi18-10 | 316 | 657 | 57.1 | 200 |
Surface Preparation | Details |
---|---|
Scotch-Brite (hand sanding) | Sand the bonded surface evenly by hand with green fine-grit Scotch-Brite sandpaper for about 30 s in one axial direction with medium pressure, and then apply SIKA Remover-208 to clean the bonded surface before bonding. |
P 180 (hand sanding) | Sand the bonded surface evenly by hand with 180-grit sandpaper for about 30 s in one axial direction with medium pressure, and then apply SIKA Remover-208 to clean the bonded surface before bonding. |
LC (laser for cleaning) | Use a laser surface preparation machine with a power setting of 45 W and a pulse energy of 1.25 mJ to clean the bonding surface thoroughly. |
LT (laser for texturing) | The untreated bonded surface is treated with a nanosecond pulsed fiber laser for laser texturing with a constant power of 5% and a limited number of pulses for each texture and depth (40 μm and 80 μm). |
Material | Laser Textured Forms | 40 μm | 80 μm |
---|---|---|---|
EN AW-5754 | Circle | 7 | 15 |
Line | 14 | 38 | |
X5CrNi18-10 | Circle | 24 | 45 |
Line | 42 | 110 |
Adhesive | SikaPower®-880 | SikaPower®-492G | SikaFast®-580 |
---|---|---|---|
Viscosity (Pa·s) | 100 | 230 | 150 |
Tensile strength (MPa) | 22 | 29 | 12 |
Elongation at break (%) | 3.3 | 8 | 15 |
Module of elasticity (MPa) | 2220 | 2190 | 900 |
Elements | Al | O | C | Mg | Fe |
---|---|---|---|---|---|
Scotch-Brite | 91.12 | 3.82 | 1.27 | 2.81 | 0.98 |
P 180 | 92.44 | 2.31 | 1.81 | 2.83 | 0.61 |
4C | 83.84 | 8.69 | 2.1 | 3.58 | 1.79 |
4L | 85.02 | 7.02 | 3.37 | 3.39 | 1.2 |
8C | 73.03 | 17.89 | 1.6 | 3.79 | 3.69 |
8L | 72.28 | 18.74 | 1.46 | 3.63 | 3.89 |
Elements | Fe | O | C | Cr | Ni |
---|---|---|---|---|---|
Scotch-Brite | 70.45 | 1.09 | 2.2 | 18.53 | 7.73 |
P 180 | 71.43 | 0.42 | 1.54 | 18.39 | 8.22 |
4C | 64.95 | 8.47 | 2.2 | 18.39 | 5.99 |
4L | 63.08 | 10.5 | 2.35 | 17.47 | 6.6 |
8C | 64.41 | 8.83 | 1.98 | 17.52 | 7.26 |
8L | 57.82 | 18.31 | 2.73 | 15.39 | 5.75 |
Cohesion Failure (CF) | Failure with Stress Whitening of Adhesive (SWCF) |
Special Cohesion Failure (SCF) | Adhesion Failure (AF) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdravković, N.; Klobčar, D.; Milčić, D.; Zupančič, M.; Žužek, B.; Milčić, M.; Đurić, A. Influence of Surface Preparation of Aluminum Alloy AW-5754 and Stainless Steel X5CRNI18-10 on the Properties of Bonded Joints. Materials 2024, 17, 2561. https://doi.org/10.3390/ma17112561
Zdravković N, Klobčar D, Milčić D, Zupančič M, Žužek B, Milčić M, Đurić A. Influence of Surface Preparation of Aluminum Alloy AW-5754 and Stainless Steel X5CRNI18-10 on the Properties of Bonded Joints. Materials. 2024; 17(11):2561. https://doi.org/10.3390/ma17112561
Chicago/Turabian StyleZdravković, Nataša, Damjan Klobčar, Dragan Milčić, Matevž Zupančič, Borut Žužek, Miodrag Milčić, and Aleksija Đurić. 2024. "Influence of Surface Preparation of Aluminum Alloy AW-5754 and Stainless Steel X5CRNI18-10 on the Properties of Bonded Joints" Materials 17, no. 11: 2561. https://doi.org/10.3390/ma17112561
APA StyleZdravković, N., Klobčar, D., Milčić, D., Zupančič, M., Žužek, B., Milčić, M., & Đurić, A. (2024). Influence of Surface Preparation of Aluminum Alloy AW-5754 and Stainless Steel X5CRNI18-10 on the Properties of Bonded Joints. Materials, 17(11), 2561. https://doi.org/10.3390/ma17112561