Catalyst-Enhancing Hydrothermal Carbonization of Biomass for Hydrochar and Liquid Fuel Production—A Review
Abstract
:1. Introduction
2. Catalyst Types Applied in the HTC Process
2.1. Homogeneous Catalysts
2.2. Heterogeneous Catalysts
3. Biochar Functionality as a Potential Catalyst
4. Catalyst Increasing the Success of the HTC Process
5. Catalyst Effect on the Morphological and Textural Character of Hydrochar
6. Areas of Future Research
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Wu, S.; Cui, D.; Zhou, H.; Wu, D.; Pan, S.; Xu, F.; Wang, Z. Co-Hydrothermal Carbonization of Organic Solid Wastes to Hydrochar as Potential Fuel: A Review. Sci. Total Environ. 2022, 850, 158034. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, L.; Suvarna, M.; Pan, L.; Tabatabaei, M.; Ok, Y.S.; Wang, X. Wet Wastes to Bioenergy and Biochar: A Critical Review with Future Perspectives. Sci. Total Environ. 2022, 817, 152921. [Google Scholar] [CrossRef]
- Cui, D.; Li, J.; Zhang, X.; Zhang, L.; Chang, H.; Wang, Q. Pyrolysis Temperature Effect on Compositions of Basic Nitrogen Species in Huadian Shale Oil Using Positive-Ion ESI FT-ICR MS and GC-NCD. J. Anal. Appl. Pyrolysis 2021, 153, 104980. [Google Scholar] [CrossRef]
- Lang, Q.; Liu, Z.; Li, Y.; Xu, J.; Li, J.; Liu, B.; Sun, Q. Combustion Characteristics, Kinetic and Thermodynamic Analyses of Hydrochars Derived from Hydrothermal Carbonization of Cattle Manure. J. Environ. Chem. Eng. 2022, 10, 106938. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Wan, Z.; Jing, F.; Li, Z.; Chen, J.; Tsang, D.C.W. Tailored Design of Food Waste Hydrochar for Efficient Adsorption and Catalytic Degradation of Refractory Organic Contaminant. J. Clean. Prod. 2021, 310, 127482. [Google Scholar] [CrossRef]
- Dutta, S.; He, M.; Xiong, X.; Tsang, D.C.W. Sustainable Management and Recycling of Food Waste Anaerobic Digestate: A Review. Bioresour. Technol. 2021, 341, 125915. [Google Scholar] [CrossRef] [PubMed]
- Rasaq, W.A.; Thiruchenthooran, V.; Telega, P.; Bobak, Ł.; Igwegbe, C.A.; Białowiec, A. Optimizing Hydrothermal Treatment for Sustainable Valorization and Fatty Acid Recovery from Food Waste. J. Environ. Manag. 2024, 357, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lang, Q.; Pan, Z.; Jiang, Y.; Liebetrau, J.; Nelles, M.; Dong, H.; Dong, R. Performance Evaluation of a Novel Anaerobic Digestion Operation Process for Treating High-Solids Content Chicken Manure: Effect of Reduction of the Hydraulic Retention Time at a Constant Organic Loading Rate. Waste Manag. 2017, 64, 340–347. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.; Meng, J.; Zhang, J.; Zhuang, H.; Zheng, G.; Xie, W.; Ping, L.; Shan, S. Long-Term Biogas Slurry Application Increased Antibiotics Accumulation and Antibiotic Resistance Genes (ARGs) Spread in Agricultural Soils with Different Properties. Sci. Total Environ. 2021, 759, 143473. [Google Scholar] [CrossRef] [PubMed]
- Sikarwar, V.S.; Pohořelý, M.; Meers, E.; Skoblia, S.; Moško, J.; Jeremiáš, M. Potential of Coupling Anaerobic Digestion with Thermochemical Technologies for Waste Valorization. Fuel 2021, 294, 120533. [Google Scholar] [CrossRef]
- Zheng, H.; Song, C.; Bao, C.; Liu, X.; Xuan, Y.; Li, Y.; Ding, Y. Dark Calcium Carbonate Particles for Simultaneous Full-Spectrum Solar Thermal Conversion and Large-Capacity Thermochemical Energy Storage. Sol. Energy Mater. Sol. Cells 2020, 207, 110364. [Google Scholar] [CrossRef]
- Rasaq, W.A.; Okpala, C.O.R.; Igwegbe, C.A.; Białowiec, A. Navigating Pyrolysis Implementation—A Tutorial Review on Consideration Factors and Thermochemical Operating Methods for Biomass Conversion. Materials 2024, 17, 725. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Zhou, X.; Zheng, R.; Zhou, Z.; Zhang, Y.; Zhu, G.; Yu, C.; Hantoko, D.; Yan, M. Hydrothermal Carbonization of Food Waste after Oil Extraction Pre-Treatment: Study on Hydrochar Fuel Characteristics, Combustion Behavior, and Removal Behavior of Sodium and Potassium. Sci. Total Environ. 2021, 754, 142192. [Google Scholar] [CrossRef] [PubMed]
- Son Le, H.; Chen, W.H.; Forruque Ahmed, S.; Said, Z.; Rafa, N.; Tuan Le, A.; Ağbulut, Ü.; Veza, I.; Phuong Nguyen, X.; Quang Duong, X.; et al. Hydrothermal Carbonization of Food Waste as Sustainable Energy Conversion Path. Bioresour. Technol. 2022, 363, 127958. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Quek, A.; Kent Hoekman, S.; Balasubramanian, R. Production of Solid Biochar Fuel from Waste Biomass by Hydrothermal Carbonization. Fuel 2013, 103, 943–949. [Google Scholar] [CrossRef]
- Rasaq, W.A.; Matyjewicz, B.; Lazar, Z.; Kupaj, P.; Janek, T.; Valentin, M.; Białowiec, A. Food Waste Recycling to Yarrowia Biomass Due to Combined Hydrothermal Carbonization and Biological Treatment. J. Clean. Prod. 2024, 456, 142385. [Google Scholar] [CrossRef]
- Cheng, J.J.; Timilsina, G.R. Status and Barriers of Advanced Biofuel Technologies: A Review. Renew. Energy 2011, 36, 3541–3549. [Google Scholar] [CrossRef]
- Abdullah, R.F.; Rashid, U.; Ibrahim, M.L.; NolHakim, M.A.H.L.; Moser, B.R.; Alharthi, F.A. Bifunctional Biomass-Based Catalyst for Biodiesel Production via Hydrothermal Carbonization (HTC) Pretreatment–Synthesis, Characterization and Optimization. Process Saf. Environ. Prot. 2021, 156, 219–230. [Google Scholar] [CrossRef]
- Mansir, N.; Taufiq-Yap, Y.H.; Rashid, U.; Lokman, I.M. Investigation of Heterogeneous Solid Acid Catalyst Performance on Low Grade Feedstocks for Biodiesel Production: A Review. Energy Convers. Manag. 2017, 141, 171–182. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Hu, X.; Liu, Q. Progress of Using Biochar as a Catalyst in Thermal Conversion of Biomass. Rev. Chem. Eng. 2021, 37, 229–258. [Google Scholar] [CrossRef]
- Anastasakis, K.; Ross, A.B. Hydrothermal Liquefaction of the Brown Macro-Alga Laminaria Saccharina: Effect of Reaction Conditions on Product Distribution and Composition. Bioresour. Technol. 2011, 102, 4876–4883. [Google Scholar] [CrossRef] [PubMed]
- Biller, P.; Ross, A.B. Potential Yields and Properties of Oil from the Hydrothermal Liquefaction of Microalgae with Different Biochemical Content. Bioresour. Technol. 2011, 102, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Jena, U.; Das, K.C.; Kastner, J.R. Comparison of the Effects of Na2CO3, Ca3(PO4)2, and NiO Catalysts on the Thermochemical Liquefaction of Microalga Spirulina Platensis. Appl. Energy 2012, 98, 368–375. [Google Scholar] [CrossRef]
- 98/02824 Liquefaction Behavior of Point of Ayr Coal. Fuel Energy Abstr. 1998, 39, 261. [CrossRef]
- Shakya, R.; Whelen, J.; Adhikari, S.; Mahadevan, R.; Neupane, S. Effect of Temperature and Na2CO3 Catalyst on Hydrothermal Liquefaction of Algae. Algal Res. 2015, 12, 80–90. [Google Scholar] [CrossRef]
- Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal Liquefaction of Biomass: A Review of Subcritical Water Technologies. Energy 2011, 36, 2328–2342. [Google Scholar] [CrossRef]
- Watanabe, M.; Aizawa, Y.; Iida, T.; Aida, T.M.; Levy, C.; Sue, K.; Inomata, H. Glucose Reactions with Acid and Base Catalysts in Hot Compressed Water at 473 K. Carbohydr. Res. 2005, 340, 1925–1930. [Google Scholar] [CrossRef]
- Ong, H.C.; Chen, W.H.; Farooq, A.; Gan, Y.Y.; Lee, K.T.; Ashokkumar, V. Catalytic Thermochemical Conversion of Biomass for Biofuel Production: A Comprehensive Review. Renew. Sustain. Energy Rev. 2019, 113, 109266. [Google Scholar] [CrossRef]
- Song, C.; Hu, H.; Zhu, S.; Wang, G.; Chen, G. Nonisothermal Catalytic Liquefaction of Corn Stalk in Subcritical and Supercritical Water. Energy Fuels 2004, 18, 90–96. [Google Scholar] [CrossRef]
- Zhu, Z.; Toor, S.S.; Rosendahl, L.; Yu, D.; Chen, G. Influence of Alkali Catalyst on Product Yield and Properties via Hydrothermal Liquefaction of Barley Straw. Energy 2015, 80, 284–292. [Google Scholar] [CrossRef]
- Karagöz, S.; Bhaskar, T.; Muto, A.; Sakata, Y. Hydrothermal Upgrading of Biomass: Effect of K2CO3 Concentration and Biomass/Water Ratio on Products Distribution. Bioresour. Technol. 2006, 97, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Rasaq, W.A.; Golonka, M.; Scholz, M.; Białowiec, A. Opportunities and Challenges of High-pressure Fast Pyrolysis of Biomass: A Review. Energies 2021, 14, 5426. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Sarrión, A.; Baeza, J.A.; Diaz, E.; Calvo, L.; Mohedano, A.F.; Gilarranz, M.A. Integration of Hydrothermal Carbonization and Aqueous Phase Reforming for Energy Recovery from Sewage Sludge. Chem. Eng. J. 2022, 442, 136301. [Google Scholar] [CrossRef]
- Muthu Dinesh Kumar, R.; Anand, R. Production of Biofuel from Biomass Downdraft Gasification and Its Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; ISBN 9780081027912. [Google Scholar]
- Chi, N.T.; Anto, S.; Ahamed, T.S.; Kumar, S.S.; Shanmugam, S.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. A Review on Biochar Production Techniques and Biochar Based Catalyst for Biofuel Production from Algae. Fuel 2021, 287, 119411. [Google Scholar] [CrossRef]
- Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Zhang, H.; Gao, Z.; Li, J.; Liu, G.; et al. Microwave Assisted Preparation of Activated Carbon from Biomass: A Review. Renew. Sustain. Energy Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Masoumi, S.; Borugadda, V.B.; Nanda, S.; Dalai, A.K. Hydrochar A Review on Its Production Technologies. Catalysts 2021, 11, 939. [Google Scholar] [CrossRef]
- Moralı, U.; Demiral, H.; Şensöz, S. Optimization of Activated Carbon Production from Sunflower Seed Extracted Meal: Taguchi Design of Experiment Approach and Analysis of Variance. J. Clean. Prod. 2018, 189, 602–611. [Google Scholar] [CrossRef]
- Sulaiman, N.S.; Hashim, R.; Mohamad Amini, M.H.; Danish, M.; Sulaiman, O. Optimization of Activated Carbon Preparation from Cassava Stem Using Response Surface Methodology on Surface Area and Yield. J. Clean. Prod. 2018, 198, 1422–1430. [Google Scholar] [CrossRef]
- Cheng, F.; Li, X. Preparation and Application of Biochar-Based Catalysts for Biofuel Production. Catalysts 2018, 8, 346. [Google Scholar] [CrossRef]
- Aysu, T.; Durak, H. Bio-Oil Production via Catalytic Supercritical Liquefaction of Syrian Mesquite (Prosopis Farcta). J. Supercrit. Fluids 2016, 109, 26–34. [Google Scholar] [CrossRef]
- Thangaraj, B.; Solomon, P.R.; Muniyandi, B.; Ranganathan, S.; Lin, L. Catalysis in Biodiesel Production—A Review. Clean Energy 2019, 3, 2–23. [Google Scholar] [CrossRef]
- Kumar, S.; Soomro, S.A.; Harijan, K.; Uqaili, M.A.; Kumar, L. Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review. Energies 2023, 16, 644. [Google Scholar] [CrossRef]
- Kang, K.; Nanda, S.; Hu, Y. Current Trends in Biochar Application for Catalytic Conversion of Biomass to Biofuels. Catal. Today 2022, 404, 3–18. [Google Scholar] [CrossRef]
- Gasim, M.F.; Lim, J.W.; Low, S.C.; Lin, K.Y.A.; Oh, W. Da Can Biochar and Hydrochar Be Used as Sustainable Catalyst for Persulfate Activation? Chemosphere 2022, 287, 132458. [Google Scholar] [CrossRef] [PubMed]
- Djandja, O.S.; Liew, R.K.; Liu, C.; Liang, J.; Yuan, H.; He, W.; Feng, Y.; Lougou, B.G.; Duan, P.G.; Lu, X.; et al. Catalytic Hydrothermal Carbonization of Wet Organic Solid Waste: A Review. Sci. Total Environ. 2023, 873, 162119. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, S.; Bhosale, R.R.; Nguyen, D.D.; Chi, N.T.L.; Ponnusamy, V.K.; Woong, C.S.; Kumar, G. Catalytic Hydrothermal Liquefaction of Biomass into Bio-Oils and Other Value-Added Products—A Review. Fuel 2021, 285, 119053. [Google Scholar] [CrossRef]
- Xu, D.; Lin, G.; Guo, S.; Wang, S.; Guo, Y.; Jing, Z. Catalytic Hydrothermal Liquefaction of Algae and Upgrading of Biocrude: A Critical Review. Renew. Sustain. Energy Rev. 2018, 97, 103–118. [Google Scholar] [CrossRef]
- Low, Y.W.; Yee, K.F. A Review on Lignocellulosic Biomass Waste into Biochar-Derived Catalyst: Current Conversion Techniques, Sustainable Applications and Challenges. Biomass Bioenergy 2021, 154, 106245. [Google Scholar] [CrossRef]
- He, X.; Zheng, N.; Hu, R.; Hu, Z.; Yu, J.C. Hydrothermal and Pyrolytic Conversion of Biomasses into Catalysts for Advanced Oxidation Treatments. Adv. Funct. Mater. 2021, 31, 2006505. [Google Scholar] [CrossRef]
- Cao, X.; Sun, S.; Sun, R. Application of Biochar-Based Catalysts in Biomass Upgrading: A Review. RSC Adv. 2017, 7, 48793–48805. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. A Review of the Current Knowledge and Challenges of Hydrothermal Carbonization for Biomass Conversion. J. Energy Inst. 2019, 92, 1779–1799. [Google Scholar] [CrossRef]
- Antero, R.V.P.; Alves, A.C.F.; de Oliveira, S.B.; Ojala, S.A.; Brum, S.S. Challenges and Alternatives for the Adequacy of Hydrothermal Carbonization of Lignocellulosic Biomass in Cleaner Production Systems: A Review. J. Clean. Prod. 2020, 252, 119899. [Google Scholar] [CrossRef]
- Ischia, G.; Fiori, L. Hydrothermal Carbonization of Organic Waste and Biomass: A Review on Process, Reactor, and Plant Modeling. Waste Biomass Valorization 2021, 12, 2797–2824. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Sadeqzadeh, M.; Guo, M.; Borhani, T.N.; Murthy, N.V.S.N.; Cortada, M.; Wang, L.; Hallett, J.; Shah, N.; Berkeley, L.; et al. The Multi-Scale Challenges of Biomass Fast Pyrolysis and Bio-Oil Upgrading: Review of the State of Art and Future Research Directions. Prog. Energy Combust. Sci. 2019, 71, 1–80. [Google Scholar] [CrossRef]
- Yang, B.; Dai, J.; Zhao, Y.; Wang, Z.; Wu, J.; Ji, C.; Zhang, Y.; Pu, X. Synergy Effect between Tetracycline and Cr(VI) on Combined Pollution Systems Driving Biochar-Templated Fe3O4@SiO2/TiO2/g-C3N4 Composites for Enhanced Removal of Pollutants. Biochar 2023, 5, 1. [Google Scholar] [CrossRef]
- Zhou, C.H.; Xia, X.; Lin, C.X.; Tong, D.S.; Beltramini, J. Catalytic Conversion of Lignocellulosic Biomass to Fine Chemicals and Fuels. Chem. Soc. Rev. 2011, 40, 5588–5617. [Google Scholar] [CrossRef] [PubMed]
- Mandari, V.; Devarai, S.K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: A Critical Review. Bioenergy Res. 2022, 15, 935–961. [Google Scholar] [CrossRef] [PubMed]
- Elhalil, A.; Elmoubarki, R.; Farnane, M.; Machrouhi, A.; Sadiq, M.; Mahjoubi, F.Z.; Qourzal, S.; Barka, N. Photocatalytic Degradation of Caffeine as a Model Pharmaceutical Pollutant on Mg Doped ZnO-Al2O3 Heterostructure. Environ. Nanotechnol. Monit. Manag. 2018, 10, 63–72. [Google Scholar] [CrossRef]
- Elhalil, A.; Elmoubarki, R.; Machrouhi, A.; Sadiq, M.; Abdennouri, M.; Qourzal, S.; Barka, N. Photocatalytic Degradation of Caffeine by ZnO-ZnAl2O4 Nanoparticles Derived from LDH Structure. J. Environ. Chem. Eng. 2017, 5, 3719–3726. [Google Scholar] [CrossRef]
- Diaz De Tuesta, J.L.; Saviotti, M.C.; Roman, F.F.; Pantuzza, G.F.; Sartori, H.J.F.; Shinibekova, A.; Kalmakhanova, M.S.; Massalimova, B.K.; Pietrobelli, J.M.T.A.; Lenzi, G.G.; et al. Assisted Hydrothermal Carbonization of Agroindustrial Byproducts as Effective Step in the Production of Activated Carbon Catalysts for Wet Peroxide Oxidation of Micro-Pollutants. J. Environ. Chem. Eng. 2021, 9, 105004. [Google Scholar] [CrossRef]
- Abelniece, Z.; Laipniece, L.; Kampars, V. Biodiesel Production by Interesterification of Rapeseed Oil with Methyl Formate in Presence of Potassium Alkoxides. Biomass Convers. Biorefinery 2022, 12, 2881–2889. [Google Scholar] [CrossRef]
- Xu, S.; Chen, J.; Peng, H.; Leng, S.; Li, H.; Qu, W.; Hu, Y.; Li, H.; Jiang, S.; Zhou, W.; et al. Effect of Biomass Type and Pyrolysis Temperature on Nitrogen in Biochar, and the Comparison with Hydrochar. Fuel 2021, 291, 120128. [Google Scholar] [CrossRef]
- Ross, A.B.; Biller, P.; Kubacki, M.L.; Li, H.; Lea-Langton, A.; Jones, J.M. Hydrothermal Processing of Microalgae Using Alkali and Organic Acids. Fuel 2010, 89, 2234–2243. [Google Scholar] [CrossRef]
- Huang, H.-j.; Yuan, X.-z.; Zhu, H.-n.; Li, H.; Liu, Y.; Wang, X.-l.; Zeng, G.-m. Comparative Studies of Thermochemical Liquefaction Characteristics of Microalgae, Lignocellulosic Biomass and Sewage Sludge. Energy 2013, 56, 52–60. [Google Scholar] [CrossRef]
- Long, J.; Li, Y.; Zhang, X.; Tang, L.; Song, C.; Wang, F. Comparative Investigation on Hydrothermal and Alkali Catalytic Liquefaction of Bagasse: Process Efficiency and Product Properties. Fuel 2016, 186, 685–693. [Google Scholar] [CrossRef]
- Duan, P.; Savage, P.E. Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Ind. Eng. Chem. Res. 2011, 50, 52–61. [Google Scholar] [CrossRef]
- Shuping, Z.; Yulong, W.; Mingde, Y.; Kaleem, I.; Chun, L.; Tong, J. Production and Characterization of Bio-Oil from Hydrothermal Liquefaction of Microalgae Dunaliella Tertiolecta Cake. Energy 2010, 35, 5406–5411. [Google Scholar] [CrossRef]
- Yang, Y.F.; Feng, C.P.; Inamori, Y.; Maekawa, T. Analysis of Energy Conversion Characteristics in Liquefaction of Algae. Resour. Conserv. Recycl. 2004, 43, 21–33. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Wang, X.; Zhang, B.; Tian, W.; Zhang, J. Hydrothermal Liquefaction of Microalgae over Transition Metal Supported TiO2 Catalyst. Bioresour. Technol. 2018, 250, 474–480. [Google Scholar] [CrossRef]
- de Caprariis, B.; Scarsella, M.; Bavasso, I.; Bracciale, M.P.; Tai, L.; De Filippis, P. Effect of Ni, Zn and Fe on Hydrothermal Liquefaction of Cellulose: Impact on Bio-Crude Yield and Composition. J. Anal. Appl. Pyrolysis 2021, 157, 105225. [Google Scholar] [CrossRef]
- Yim, S.C.; Quitain, A.T.; Yusup, S.; Sasaki, M.; Uemura, Y.; Kida, T. Metal Oxide-Catalyzed Hydrothermal Liquefaction of Malaysian Oil Palm Biomass to Bio-Oil under Supercritical Condition. J. Supercrit. Fluids 2017, 120, 384–394. [Google Scholar] [CrossRef]
- Krishna, B.B.; Singh, R.; Bhaskar, T. Effect of Catalyst Contact on the Pyrolysis of Wheat Straw and Wheat Husk. Fuel 2015, 160, 64–70. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Zhang, S.; Fu, H.; Chen, J. Hydrothermal Liquefaction of Macroalgae Enteromorpha Prolifera to Bio-Oil. Energy Fuels 2010, 24, 4054–4061. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Liu, S.; Feng, L. Direct Hydrothermal Liquefaction of Undried Macroalgae Enteromorpha Prolifera Using Acid Catalysts. Energy Convers. Manag. 2014, 87, 938–945. [Google Scholar] [CrossRef]
- Shah, A.A.; Toor, S.S.; Conti, F.; Nielsen, A.H.; Rosendahl, L.A. Hydrothermal Liquefaction of High Ash Containing Sewage Sludge at Sub and Supercritical Conditions. Biomass Bioenergy 2020, 135, 105504. [Google Scholar] [CrossRef]
- Malins, K.; Kampars, V.; Brinks, J.; Neibolte, I.; Murnieks, R.; Kampare, R. Bio-Oil from Thermo-Chemical Hydro-Liquefaction of Wet Sewage Sludge. Bioresour. Technol. 2015, 187, 23–29. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhu, X.; Dutta, S.; Khanal, S.K.; Lee, K.T.; Masek, O.; Tsang, D.C.W. Catalytic Co-Hydrothermal Carbonization of Food Waste Digestate and Yard Waste for Energy Application and Nutrient Recovery. Bioresour. Technol. 2022, 344, 126395. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zheng, X.; Yu, H.; Hu, X. Hydrothermal Liquefaction of Chlorella Pyrenoidosa for Bio-Oil Production over Ce/HZSM-5. Bioresour. Technol. 2014, 156, 1–5. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Savage, P.E. Catalytic Hydrothermal Liquefaction of a Microalga in a Two-Chamber Reactor. Ind. Eng. Chem. Res. 2014, 53, 11939–11944. [Google Scholar] [CrossRef]
- Xu, C.; Etcheverry, T. Hydro-Liquefaction of Woody Biomass in Sub- and Super-Critical Ethanol with Iron-Based Catalysts. Fuel 2008, 87, 335–345. [Google Scholar] [CrossRef]
- Islam, A.; Taufiq-Yap, Y.H.; Chan, E.S.; Moniruzzaman, M.; Islam, S.; Nabi, M.N. Advances in Solid-Catalytic and Non-Catalytic Technologies for Biodiesel Production. Energy Convers. Manag. 2014, 88, 1200–1218. [Google Scholar] [CrossRef]
- Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2419. [Google Scholar] [CrossRef]
- Trong On, D.; Desplantier-Giscard, D.; Danumah, C.; Kaliaguine, S. Perspectives in Catalytic Applications of Mesostructured Materials. Appl. Catal. A Gen. 2003, 253, 545–602. [Google Scholar] [CrossRef]
- Ma, Z.; Zaera, F. Heterogeneous Catalysis by Metals. Encycl. Inorg. Chem. 2006. [Google Scholar] [CrossRef]
- Galadima, A.; Muraza, O. Hydrothermal Liquefaction of Algae and Bio-Oil Upgrading into Liquid Fuels: Role of Heterogeneous Catalysts. Renew. Sustain. Energy Rev. 2018, 81, 1037–1048. [Google Scholar] [CrossRef]
- Shu, Q.; Gao, J.; Nawaz, Z.; Liao, Y.; Wang, D.; Wang, J. Synthesis of Biodiesel from Waste Vegetable Oil with Large Amounts of Free Fatty Acids Using a Carbon-Based Solid Acid Catalyst. Appl. Energy 2010, 87, 2589–2596. [Google Scholar] [CrossRef]
- Ramos, M.J.; Casas, A.; Rodríguez, L.; Romero, R.; Pérez, Á. Transesterification of Sunflower Oil over Zeolites Using Different Metal Loading: A Case of Leaching and Agglomeration Studies. Appl. Catal. A Gen. 2008, 346, 79–85. [Google Scholar] [CrossRef]
- Shu, Q.; Yang, B.; Yuan, H.; Qing, S.; Zhu, G. Synthesis of Biodiesel from Soybean Oil and Methanol Catalyzed by Zeolite Beta Modified with La3+. Catal. Commun. 2007, 8, 2159–2165. [Google Scholar] [CrossRef]
- Zhao, C.; Lv, P.; Yang, L.; Xing, S.; Luo, W.; Wang, Z. Biodiesel Synthesis over Biochar-Based Catalyst from Biomass Waste Pomelo Peel. Energy Convers. Manag. 2018, 160, 477–485. [Google Scholar] [CrossRef]
- Yu, J.T.; Dehkhoda, A.M.; Ellis, N. Development of Biochar-Based Catalyst for Transesterification of Canola Oil. Energy Fuels 2011, 25, 337–344. [Google Scholar] [CrossRef]
- Liu, W.J.; Jiang, H.; Yu, H.Q. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chem. Rev. 2015, 115, 12251–12285. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Z.; Lv, S. A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate. Bioresour. Technol. 2011, 102, 716–723. [Google Scholar] [CrossRef]
- Ormsby, R.; Kastner, J.R.; Miller, J. Hemicellulose Hydrolysis Using Solid Acid Catalysts Generated from Biochar. Catal. Today 2012, 190, 89–97. [Google Scholar] [CrossRef]
- Dehkhoda, A.M.; West, A.H.; Ellis, N. Biochar Based Solid Acid Catalyst for Biodiesel Production. Appl. Catal. A Gen. 2010, 382, 197–204. [Google Scholar] [CrossRef]
- Tian, C.; Li, B.; Liu, Z.; Zhang, Y.; Lu, H. Hydrothermal Liquefaction for Algal Biorefinery: A Critical Review. Renew. Sustain. Energy Rev. 2014, 38, 933–950. [Google Scholar] [CrossRef]
- Aturagaba, G.; Egesa, D.; Mubiru, E.; Tebandeke, E. Catalytic Hydrothermal Liquefaction of Water Hyacinth Using Fe3O4/NiO Nanocomposite: Optimization of Reaction Conditions by Response Surface Methodology. J. Sustain. Bioenergy Syst. 2023, 13, 73–98. [Google Scholar] [CrossRef]
- Sun, P.; Heng, M.; Sun, S.; Chen, J. Direct Liquefaction of Paulownia in Hot Compressed Water: Influence of Catalysts. Energy 2010, 35, 5421–5429. [Google Scholar] [CrossRef]
- Karagöz, S.; Bhaskar, T.; Muto, A.; Sakata, Y.; Oshiki, T.; Kishimoto, T. Low-Temperature Catalytic Hydrothermal Treatment of Wood Biomass: Analysis of Liquid Products. Chem. Eng. J. 2005, 108, 127–137. [Google Scholar] [CrossRef]
- Feng, S.; Yuan, Z.; Leitch, M.; Xu, C.C. Hydrothermal Liquefaction of Barks into Bio-Crude–Effects of Species and Ash Content/Composition. Fuel 2014, 116, 214–220. [Google Scholar] [CrossRef]
- Akhtar, J.; Kuang, S.K.; Amin, N.A.S. Liquefaction of Empty Palm Fruit Bunch (EPFB) in Alkaline Hot Compressed Water. Renew. Energy 2010, 35, 1220–1227. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, R.B. Biocrude Production from Switchgrass Using Subcritical Water. Energy Fuels 2009, 23, 5151–5159. [Google Scholar] [CrossRef]
- Wang, C.; Pan, J.; Li, J.; Yang, Z. Comparative Studies of Products Produced from Four Different Biomass Samples via Deoxy-Liquefaction. Bioresour. Technol. 2008, 99, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.; Lin, H.; Zheng, Y.; Zhao, J.; Pelletier, A.; Li, K. Effects of Solvents and Catalysts in Liquefaction of Pinewood Sawdust for the Production of Bio-Oils. Biomass Bioenergy 2013, 59, 158–167. [Google Scholar] [CrossRef]
- Qian, Y.; Zuo, C.; Tan, J.; He, J. Structural Analysis of Bio-Oils from Sub-and Supercritical Water Liquefaction of Woody Biomass. Energy 2007, 32, 196–202. [Google Scholar] [CrossRef]
- Lu, X.; Flora, J.R.V.; Berge, N.D. Influence of Process Water Quality on Hydrothermal Carbonization of Cellulose. Bioresour. Technol. 2014, 154, 229–239. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Wang, Y.; Huang, H.; Chen, Y. Influence of Pyrolysis Temperature and Holding Time on Properties of Biochar Derived from Medicinal Herb (Radix Isatidis) Residue and Its Effect on Soil CO2 Emission. J. Anal. Appl. Pyrolysis 2014, 110, 277–284. [Google Scholar] [CrossRef]
- Charisteidis, I.; Lazaridis, P.; Fotopoulos, A.; Pachatouridou, E.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Triantafyllidis, K. Catalytic Fast Pyrolysis of Lignin Isolated by Hybrid Organosolv—Steam Explosion Pretreatment of Hardwood and Softwood Biomass for the Production of Phenolics and Aromatics. Catalysts 2019, 9, 935. [Google Scholar] [CrossRef]
- Yeh, T.M.; Dickinson, J.G.; Franck, A.; Linic, S.; Thompson, L.T.; Savage, P.E. Hydrothermal Catalytic Production of Fuels and Chemicals from Aquatic Biomass. J. Chem. Technol. Biotechnol. 2013, 88, 13–24. [Google Scholar] [CrossRef]
- Zhuang, Y.; Guo, J.; Chen, L.; Li, D.; Liu, J.; Ye, N. Microwave-Assisted Direct Liquefaction of Ulva Prolifera for Bio-Oil Production by Acid Catalysis. Bioresour. Technol. 2012, 116, 133–139. [Google Scholar] [CrossRef]
- Schmieder, H.; Abeln, J.; Boukis, N.; Dinjus, E.; Kruse, A.; Kluth, M.; Petrich, G.; Sadri, E.; Schacht, M. Hydrothermal Gasification of Biomass and Organic Wastes. J. Supercrit. Fluids 2000, 17, 145–153. [Google Scholar] [CrossRef]
- Sinag, A.; Kruse, A.; Schwarzkopf, V. Key Compounds of the Hydropyrolysis of Glucose in Supercritical Water in the Presence of K2CO3. Ind. Eng. Chem. Res. 2003, 42, 3516–3521. [Google Scholar] [CrossRef]
- Cheng, S.; Wei, L.; Rabnawaz, M. Catalytic Liquefaction of Pine Sawdust and In-Situ Hydrogenation of Bio-Crude over Bifunctional Co-Zn/HZSM-5 Catalysts. Fuel 2018, 223, 252–260. [Google Scholar] [CrossRef]
- Minowa, T.; Zhen, F.; Ogi, T. Cellulose Decomposition in Hot-Compressed Water with Alkali or Nickel Catalyst. J. Supercrit. Fluids 1998, 13, 253–259. [Google Scholar] [CrossRef]
- Liu, C.; Kong, L.; Wang, Y.; Dai, L. Catalytic Hydrothermal Liquefaction of Spirulina to Bio-Oil in the Presence of Formic Acid over Palladium-Based Catalysts. Algal Res. 2018, 33, 156–164. [Google Scholar] [CrossRef]
- Duman, G.; Yanik, J. Two-Step Steam Pyrolysis of Biomass for Hydrogen Production. Int. J. Hydrogen Energy 2017, 42, 17000–17008. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhu, G.; Huang, X.; Qiu, X. Microwave Assisted Liquefaction of Wheat Straw Alkali Lignin for the Production of Monophenolic Compounds. J. Energy Chem. 2015, 24, 72–76. [Google Scholar] [CrossRef]
- Zhu, L.; Yin, S.; Yin, Q.; Wang, H.; Wang, S. Biochar: A New Promising Catalyst Support Using Methanation as a Probe Reaction. Energy Sci. Eng. 2015, 3, 126–134. [Google Scholar] [CrossRef]
- Wildschut, J.; Mahfud, F.H.; Venderbosch, R.H.; Heeres, H.J. Hydrotreatment of Fast Pyrolysis Oil Using Heterogeneous Noble-Metal Catalysts. Ind. Eng. Chem. Res. 2009, 48, 10324–10334. [Google Scholar] [CrossRef]
- Tzanetis, K.F.; Posada, J.A.; Ramirez, A. Analysis of Biomass Hydrothermal Liquefaction and Biocrude-Oil Upgrading for Renewable Jet Fuel Production: The Impact of Reaction Conditions on Production Costs and GHG Emissions Performance. Renew. Energy 2017, 113, 1388–1398. [Google Scholar] [CrossRef]
- Śliz, M.; Wilk, M. A Comprehensive Investigation of Hydrothermal Carbonization: Energy Potential of Hydrochar Derived from Virginia Mallow. Renew. Energy 2020, 156, 942–950. [Google Scholar] [CrossRef]
- Fu, K.; Yue, Q.; Gao, B.; Sun, Y.; Wang, Y.; Li, Q.; Zhao, P.; Chen, S. Physicochemical and Adsorptive Properties of Activated Carbons from Arundo Donax Linn Utilizing Different Iron Salts as Activating Agents. J. Taiwan Inst. Chem. Eng. 2014, 45, 3007–3015. [Google Scholar] [CrossRef]
- Jia, Y.; Shi, S.; Liu, J.; Su, S.; Liang, Q.; Zeng, X.; Li, T. Applied Sciences Study of the Effect of Pyrolysis Temperature on the Cd2+ Adsorption Characteristics of Biochar. Appl. Sci. 2018, 8, 1019. [Google Scholar] [CrossRef]
- Scapin, E.; Lazzari, E.; Benvenutti, E.V.; Falcade, T. Activated Carbon from Rice Husk Biochar with High Surface Area. Biointerface Res. Appl. Chem. 2021, 11, 10265–10277. [Google Scholar]
- Xing, X.; Jiang, W.; Li, S.; Zhang, X.; Wang, W. Preparation and Analysis of Straw Activated Carbon Synergetic Catalyzed by ZnCl2-H3PO4 through Hydrothermal Carbonization Combined with Ultrasonic Assisted Immersion Pyrolysis. Waste Manag. 2019, 89, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, Y.; Wang, H.; Chen, T.; Lu, W. Enhanced Photodegradation of Pentachlorophenol in a Soil Washing System under Solar Irradiation with TiO2 Nanorods Combined with Municipal Sewage Sludge. Microporous Mesoporous Mater. 2015, 201, 99–104. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.-b.; Peng, J.-h.; Li, N.; Zhu, X.-y. Preparation of High Surface Area Activated Carbons from Tobacco Stems with K2CO3 Activation Using Microwave Radiation. Ind. Crops Prod. 2008, 27, 341–347. [Google Scholar] [CrossRef]
- Longprang, T.; Jaruwat, D.; Udomsap, P.; Chollacoop, N.; Eiad-Ua, A. Influence of Acid Additive on Nanoporous Carbon Materials via HTC for Catalyst Support. Mater. Today Proc. 2020, 23, 762–766. [Google Scholar] [CrossRef]
- Dai, L.; Yang, B.; Li, H.; Tan, F.; Zhu, N.; Zhu, Q.; He, M.; Ran, Y.; Hu, G. A Synergistic Combination of Nutrient Reclamation from Manure and Resultant Hydrochar Upgradation by Acid-Supported Hydrothermal Carbonization. Bioresour. Technol. 2017, 243, 860–866. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z. Comparison of Hydrochar- and Pyrochar-Based Solid Acid Catalysts from Cornstalk: Physiochemical Properties, Catalytic Activity and Deactivation Behavior. Bioresour. Technol. 2020, 297, 122477. [Google Scholar] [CrossRef]
- Ma, R.; Fakudze, S.; Shang, Q.; Wei, Y.; Chen, J.; Liu, C.; Han, J.; Chu, Q. Catalytic Hydrothermal Carbonization of Pomelo Peel for Enhanced Combustibility of Coal/Hydrochar Blends and Reduced CO2 Emission. Fuel 2021, 304, 121422. [Google Scholar] [CrossRef]
- Jezierska-Thöle, A.; Rudnicki, R.; Kluba, M. Development of Energy Crops Cultivation for Biomass Production in Poland. Renew. Sustain. Energy Rev. 2016, 62, 534–545. [Google Scholar] [CrossRef]
- Liang, M.; Zhang, K.; Lei, P.; Wang, B.; Shu, C.M.; Li, B. Fuel Properties and Combustion Kinetics of Hydrochar Derived from Co-Hydrothermal Carbonization of Tobacco Residues and Graphene Oxide. Biomass Convers. Biorefinery 2020, 10, 189–201. [Google Scholar] [CrossRef]
- MacDermid-Watts, K.; Pradhan, R.; Dutta, A. Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review. Waste Biomass Valorization 2021, 12, 2171–2186. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, H.A.; Griffin, G.J.; Mubarak, N.M.; Bhutto, A.W.; Abro, R.; Mazari, S.A.; Ali, B.S. An Overview of Effect of Process Parameters on Hydrothermal Carbonization of Biomass. Renew. Sustain. Energy Rev. 2017, 73, 1289–1299. [Google Scholar] [CrossRef]
- Zhao, P.; Shen, Y.; Ge, S.; Chen, Z.; Yoshikawa, K. Clean Solid Biofuel Production from High Moisture Content Waste Biomass Employing Hydrothermal Treatment. Appl. Energy 2014, 131, 345–367. [Google Scholar] [CrossRef]
- Mumme, J.; Titirici, M.M.; Pfeiffer, A.; Lüder, U.; Reza, M.T.; Mašek, O. Hydrothermal Carbonization of Digestate in the Presence of Zeolite: Process Efficiency and Composite Properties. ACS Sustain. Chem. Eng. 2015, 3, 2967–2974. [Google Scholar] [CrossRef]
- Lynam, J.G.; Coronella, C.J.; Yan, W.; Reza, M.T.; Vasquez, V.R. Acetic Acid and Lithium Chloride Effects on Hydrothermal Carbonization of Lignocellulosic Biomass. Bioresour. Technol. 2011, 102, 6192–6199. [Google Scholar] [CrossRef]
- Rather, M.A.; Khan, N.S.; Gupta, R. Catalytic Hydrothermal Carbonization of Invasive Macrophyte Hornwort (Ceratophyllum Demersum) for Production of Hydrochar: A Potential Biofuel. Int. J. Environ. Sci. Technol. 2017, 14, 1243–1252. [Google Scholar] [CrossRef]
Review Objective | Key Sections | References |
---|---|---|
Reviewed biochar value of catalysts in biofuel production, alongside the processes utilized/various biomass sources |
| [43] |
Review summarized/critically discussed catalyst types/catalytic mechanisms, as well as process parameters |
| [46] |
Reviewed biochar as a catalyst for biomass conversion via thermolysis (pyrolysis)/hydrothermolysis (liquefaction/gasification). |
| [44] |
Reviewed whether biochar and hydrochar are sustainable catalysts for persulfate(PS) activation |
| [45] |
Reviewed catalysts for high bio-oil yields with improved quality/factors that influence the catalytic hydrothermal liquefaction (HTL), mechanisms of catalytic-HTL reaction, HTL products |
| [47] |
Reviewed hydrochar characteristics/reaction mechanisms for char production technology, e.g., hydrothermal carbonization, hydrochar activation and functionalization |
| [37] |
Reviewed conversion techniques that transform lignocellulosic biomass waste into biochar (gasification and pyrolysis), compared conversion techniques in terms of benefits, drawbacks, and limitations |
| [49] |
Reviewed biochar-based catalysts for fuel production, thermochemical routes and their yield, composition/production, and choice for fuel production |
| [35] |
Reviewed two strategies to convert biomass into functional catalysts (Photocatalytic/Nonirradiant application of biomass) |
| [50] |
Reviewed catalysts’ effects on thermochemical conversion research/development involving biomass/thermochemical conversion processes |
| [28] |
Review summarized preparation/modification/catalytic application of biochar in biofuel production, from biomass hydrolysis to tar reduction |
| [40] |
Reviewed HTL catalytic upgrade/catalytic performances on algae (HTL/biocrude) upgrade |
| [48] |
Reviewed the research progress of heterogeneous catalysts for biodiesel production/low grade feedstocks |
| [19] |
Reviewed versatile applications of biochars as catalysts that upgrade biomass |
| [51] |
Catalyst | Type | Feedstock | HTC Operating Conditions | Products Yield (%) | Reference | ||
---|---|---|---|---|---|---|---|
Bio-Oil | Char | Gas | |||||
Heterogeneous Catalyst Systems | |||||||
H-ZSM−5 | Acidic catalyst | Algae | 70 mL water, 7 g algae, catalyst of 0.35 g, at 300 °C for 20 min | 34 | 24 | 42 | [80] |
H-ZSM−5 | Wheat straw | 350 °C for 60 min, catalyst to biomass—0.1:1 | 28 | 37 | 35 | [28] | |
H-ZSM−5 | Wheat husk | 350 °C, catalyst to biomass—0.1:1, 1 h | 26 | 31 | 43 | [74] | |
Ce/H-ZSM−5 | Algae | 70 mL water, 7 g algae, catalyst of 0.35 g, at 300 °C for 20 min | 50 | 18 | 32 | [80] | |
CaO | Basic catalyst | Fruit | 390 °C for 30 min, water used was at a ratio of 1:10 of biomass and 1 wt% catalyst | 63 | - | - | [73] |
bunch | |||||||
Pd/C | Metallic catalyst | Algae | 87.5% water volume, at 350 °C for 60 min, 15 mg of catalyst | 38 | - | - | [81] |
CoMo/Al2O3 | Algae | 95% water volume, at 350 °C for 60 min, 0.38 g of catalyst | 55 | - | - | [68] | |
Ni/SiO2-Al2O3 | Algae | 95% water volume, at 350 °C for 60 min, 0.384 g of catalyst | 55 | - | - | [68] | |
Ni/TiO2 | Algae | 480 g of water, at 300 °C for 30 min, and a catalyst of 10% of algae of 120 g | 31 | - | - | [71] | |
Pt/C | Algae | 350 °C for 60 min, 95% water volume, and 0.38 g of catalyst | 49 | - | - | [68] | |
Ni | Cellulose | 300 °C for 10 min, cellulose (1 g), water (5 g) and Ni (0.1 g) | 25 | 6 | 13 | [72] | |
Zeolite | Neutral catalyst | Algae | 95% water volume, at 350 °C for 60 min, 0.38 g of catalyst | 48 | - | - | [68] |
MgMnO2 | Bagasse | 250 °C in 1 to 15 min, catalyst 2 g, and 20 g of biomass | 60 | 12 | 28 | [67] | |
Homogeneous Catalytic Systems | |||||||
KOH | Basic catalyst | Algae | 350 °C, 3 g algae with 27 mL of catalyst | 15 | 5 | 10 | [65] |
Na2CO3 | Algae | 300 °C for 30 min, 20 g algae with 150 mL water, 5 wt% catalyst | 21 | 20 | 30 | [75] | |
Na2CO3 | Algae | 250 °C for 60 min, 10 g of algae with 1:6 of biomass-to-water | 38 | 25 | 8 | [25] | |
K2CO3 | Sewage sludge | 350 °C, 7 g of sludge, 2% weight of sludge | 45 | 7 | - | [77] | |
CH3COOH | Acidic catalyst | Algae | 350 °C, 3 g algae, and 27 mL of catalyst | 17 | 5 | 25 | [65] |
H2SO4 | Algae | 290 °C for 20 min, algae 30 g with 1:3 of biomass-to-water | 28 | 12 | 60 | [76] | |
HNO3 | Food waste mixture | 250 °C for 120 min, feedstock 35 g, 350 mL water, catalyst 10% of biomass | - | 47 | - | [79] | |
FeSO4 | Sewage sludge | 300 °C for 40 min sludge to water 1:5, catalyst, and 5 wt.% of dry Sludge | 48 | - | - | [78] | |
FeSO4 | Pine wood | 350 °C for 40 min, 1 g of wood, 2% weight of wood | 63 | - | 10 | [82] |
Catalysts | Feedstock | Temp. (°C) | HHV (MJ kg−1) | Elemental Analysis (wt%) | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | S | O | |||||
NiO | Spirulina platensis | 350 | 38.4 | 75 | 9 | 6 | 1.4 | 6.5 | [23] |
Ca3(PO4)2 | 35.1 | 72 | 9 | 4 | 1.1 | 12.7 | |||
Na2CO3 | 36.3 | 72 | 9 | 5 | 0.9 | 11.8 | |||
Fe | Nannochloropsis | 300 | 35.5 | 70 | 9.8 | 7 | 0.4 | 12.2 | [71] |
Mn | 33.2 | 69 | 8.6 | 7.2 | 0.4 | 14.6 | |||
K2CO3 | Straw | 300 | 17.2 | 53 | 4.3 | 0.9 | 0.7 | 40 | [30] |
Na2CO3 | Dunaliella tertiolecta | 360 | 30.7 | 63 | 7.7 | 3.7 | - | 25.1 | [69] |
HCl | Sludge | 230 | - | 46 | 4.8 | 3.7 | 0.1 | 19.2 | [46] |
HNO3 | Food waste | 250 | - | 57 | 5.8 | 1.6 | 0.5 | 23.4 | |
H2SO4 | Pig feces | 230 | - | 56 | 4.2 | 2.4 | - | 36.8 | [1] |
Pt/C | Nannochloropsis sp. | 350 | 39.6 | 75.9 | 10.8 | 4.0 | 0.7 | 8.48 | [71] |
K2CO3 | Straw | 300 | 27.2 | 67.9 | 7.6 | 0.8 | 0.6 | 23.2 | [30] |
ZSM-5 | Spruce lignin | - | - | 64.7 | 6.3 | 0.5 | 0 | 28.6 | [109] |
CH3COOH | Spirulina | - | 35.1 | 71.7 | 9.7 | 6.1 | 0.9 | 11.6 | [110] |
H2SO4 | Ulva prolifera | 180 | 15.5 | 35.7 | 6.5 | 2 | 2.2 | 32.4 | [111] |
MgMnO2 | Bagasse | 250 | 32.6 | 65.9 | 10.2 | 0.4 | 0.3 | 23.3 | [67] |
K2CO3 | Sewage sludge | 350 | 36.6 | 75.6 | 10.6 | 4.7 | - | 9.2 | [77] |
HCOOH | Sunflower oil | 350 | 37.3 | 68.4 | 11 | 0.2 | 0 | 20.5 | [22] |
Catalysts | Feedstock | Temperature °C | Effect | Reference |
---|---|---|---|---|
K2CO3 and KOH | Organic wastes and wet biomass | 550–600 | Water–gas shift | [114] |
MnO, CaO, CeO2, MgO, SnO, Al2O3, NiO, La2O3 | Empty fruit bunch | 390 | Addition of CaO, CeO2, MnO, and La2O3 catalysts maximized bio-oil yield | [73] |
Na2CO3 | Cornstalk | 277–377 | Oil yield increased | [29] |
K2CO3 | Wood biomass | 280 | Decreased the char yield | [31] |
K2CO3 | Barley straw | 280–400 | Oil yield increased | [30] |
Ni, Na2CO3 | Cellulose | 200–350 | Char decreased | [115] |
Ni, K2CO3 | Glucose | 350–500 | Water–gas shift | [113] |
H2SO4, NaOH, ZrO2, TiO2 | Glucose | 200 | Isomerization of glucose increased | [27] |
Na2CO3 NiO | Spirulina platensis microalgae | 300–350 | Increased oil yield | [23] |
NiO, Ca3(PO4)2 | Spirulina platensis microalgae | 300–350 | Increased gas yields | [23] |
Ni/TiO2 | Nannochloropsis microalgae | 300 | Increased hydrocarbons in bio-oil and acids | [71] |
Pd/HZSM-5@meso-SiO2 | Spirulina microalgae | 380 | Oil yields increased and reduced coke yields | [116] |
Co-Zn/HZSM-5 | Pine sawdust | 300 | Hydrocarbon content and oil yields increased | [114] |
Na2CO3 | Pavlova microalgae | 250–350 | HHV and oil yields increased | [25] |
MgMnO2 | Sugarcane bagasse | 250 | Degradation of lignin | [67] |
Ni | Cellulose | 350 | Enhanced H2 yield | [117] |
H2SO4, zeolite, FeS | Wheat straw | 100–180 | Degradation of lignin | [118] |
H2SO4 | Ulva prolifera | 180 | Increased oil yields | [111] |
K2CO3 | Sewage sludge | 350 | Promote the hydrolysis of carbohydrate to increase the oil yield | [2] |
Biochar at 875 °C + KOH | Woody biomass | - | Surface area of hydrochar increased | [35] |
Biochar at 875 °C + KOH | Rice husk | - | Surface area of hydrochar increased | [119] |
Biochar at 875 °C + KOH | Pomelo | - | Increase the surface area of hydrochar | [91] |
Biochar + sulfonated with SO3H | Wood | - | The porosity and surface area of the biochar increased | [96] |
Ru/C | Oil from beech wood | 350 | High HHV of oil and low oxygen content | [120] |
Ru/TiO2 | Oil from beech wood | 350 | It improves the oil yield | [120] |
Pd/C | Oil from beech wood | 250 | Demonstrate a high oil yield and reduced oxygen content | [120] |
Pt/C | Oil from beech wood | 250 | High oil yield, but oxygen content is relatively high | [120] |
Fe | Cellulose | 300 | (HHV) increased from 27.0 to 29.7 MJ/kg of the blank test and the bio-oil yield from 17.4% to 26.5% | [72] |
Zn | Cellulose | 300 | A slight increase in the bio-oil yield and water-soluble products also increased | [72] |
Fe | Biomass | 340 | Less gas emission for obtained HTL bio-jet fuel and lower production costs | [121] |
Catalyst | Feedstock | Temp. (°C) | Surface Area (m2/g) | SEM (nm) | Pore Volume (cm3/g) | Reference |
---|---|---|---|---|---|---|
KOH | Pomelo peel | 500 | 278.2 | 5000 | 154.2 | [91] |
ZnCl2 | Corn straw | 200 | 110.2 | 10,000 | 0.6867 | [126] |
2K2CO3/CuO | Mesocarp fiber | 200 | 678.8 | 5000 | 0.494 | [18] |
TiO2 | Sludge | - | - | 500 | - | [127] |
K2CO3 | Tobacco stems | 450 | 255.7 | - | 1.647 | [128] |
H2SO4 | Cattail leaves | 200 | 423.0 | 20,000 | 0.286 | [129] |
FeCl3 | Arundo donax Linn | - | 927.0 | 5000 | 0.509 | [123] |
FeCl2 | Arundo donax Linn | - | 760 | 5000 | 0.466 | [123] |
ZnCl2 | Wheat straw | 200 | 106.1 | 10 | 0.6195 | [126] |
SO3H | Cornstalk | 400 | 20.58 | - | 0.03 | [131] |
HCl | Manure | 190 | 28.92 | - | 0.088 | [130] |
Ru | Rice husk | 520 | 806 | - | 0.58 | [119] |
Biochar + SO4 | Wood | 400 | 242 | - | 0.13 | [95] |
Citric acid | Pomelo peel | 200 | 11.72 | 1000 | 0.06 | [132] |
Fe | Bagasse of sugarcane | 200 | 75 | - | - | [62] |
Catalyst | Feedstock | Temp (°C) | Wavenumber (cm−1) | Functional Group | Reference |
---|---|---|---|---|---|
SO3H | Cornstalk | 400 | 1177 and 1043 | O=S=O asymmetric stretching | [131] |
Graphene oxide | Tobacco | 2800–3000 | C–H aromatic structure and stretching vibration of aliphatic | [134] | |
ZnCl2 | Sunflower | 600 | 3700 and 3000 | C-H aliphatic stretching vibration | [38] |
K2CO3 | Switchgrass | 235 | 1166 | C-O-C asymmetry stretching of hemicelluloses and cellulose | [103] |
Na2CO3 | Microalgae | 360 | 1269 and 967 | C-O Stretching | [69] |
KOH | Palm fruit bunch | 270 | 1680–1570 | C-C stretching of aromatic groups | [102] |
Ca(OH)2 | Pine bark | 300 | 1717 | C=O stretching | [101] |
Ni | Cellulose | 300 | 3300 | O–H stretching vibration of in phenols and alcohols | [72] |
Fe | Paulownia wood | 340 | 1700 | Indicated the presence of ketone and C=O stretching vibration | [99] |
K2CO3 | Barley straw | 300 | 1263, 1201, 1113 and 1032 | The C-O stretching vibrations | [30] |
Na2CO3 | Spirulina | 350 | 2935 | Indicating C–H stretching vibrations bonds | [23] |
8K2CO3/CuO | Mesocarp fiber | 3102 | V-OH stretching | [18] | |
Citric acid | Pomelo peel | 220 | 2000–1000 | Indicated the existence of C-C and C-O functional groups | [132] |
H2SO4 | Cattail leaves | 200 | 2000–1000 | OK group on the surface generated the -OH group | [129] |
ZnCl2 | Prosopis farcta | 295 | 3344 | O-H stretching vibration bands | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasaq, W.A.; Okpala, C.O.R.; Igwegbe, C.A.; Białowiec, A. Catalyst-Enhancing Hydrothermal Carbonization of Biomass for Hydrochar and Liquid Fuel Production—A Review. Materials 2024, 17, 2579. https://doi.org/10.3390/ma17112579
Rasaq WA, Okpala COR, Igwegbe CA, Białowiec A. Catalyst-Enhancing Hydrothermal Carbonization of Biomass for Hydrochar and Liquid Fuel Production—A Review. Materials. 2024; 17(11):2579. https://doi.org/10.3390/ma17112579
Chicago/Turabian StyleRasaq, Waheed A., Charles Odilichukwu R. Okpala, Chinenye Adaobi Igwegbe, and Andrzej Białowiec. 2024. "Catalyst-Enhancing Hydrothermal Carbonization of Biomass for Hydrochar and Liquid Fuel Production—A Review" Materials 17, no. 11: 2579. https://doi.org/10.3390/ma17112579
APA StyleRasaq, W. A., Okpala, C. O. R., Igwegbe, C. A., & Białowiec, A. (2024). Catalyst-Enhancing Hydrothermal Carbonization of Biomass for Hydrochar and Liquid Fuel Production—A Review. Materials, 17(11), 2579. https://doi.org/10.3390/ma17112579