Carbonation Resistance of Ternary Portland Cements Made with Silica Fume and Limestone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Reference: CEM I 42.5 R (100wt% CEM I).
- H: Silica fume content (0wt%, 3wt%, 5wt%, 7wt%).
2.2. Natural Carbonation Testing
3. Results and Discussion
3.1. Carbonation Depth
3.2. Carbonation Coefficient
3.3. Service Life Estimation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.Y.; Han, R.; Yu, B.; Wei, Y.M. Accounting process-related CO2 emissions from global cement production under Shared Socioeconomic Pathways. J. Clean. Prod. 2018, 184, 451–465. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zaragoza, A. Carbon Dioxide Uptake by Cement-Based Materials: A Spanish Case Study. Appl. Sci. 2020, 10, 339. [Google Scholar] [CrossRef]
- Bouarroudj, M.E.; Remond, S.; Bulteel, D. Use of grinded hardened cement pastes as mineral addition for mortars. J. Build. Eng. 2020, 23, 101863. [Google Scholar] [CrossRef]
- Nie, S.; Zhou, J.; Yang, F.; Lan, M.; Li, J.; Zhang, Z.; Chen, Z.; Xu, M.; Li, H.; Sanjayan, J.G. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. J. Clean. Prod. 2022, 334, 130270. [Google Scholar] [CrossRef]
- Miller, S.A.; Horvath, A.; Monteiro, P.J.M. Readily implementable tech-niques can cut annual CO2 emissions from the production of concrete by over 20%. Environ. Res. Lett. 2016, 11, 074029. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Argiz, C.; Mora, P.; Zaragoza, A. Carbon Dioxide Uptake in the Roadmap 2050 of the Spanish Cement Industry. Energies 2020, 13, 3452. [Google Scholar] [CrossRef]
- Sanjuán, N.; Mora, P.; Sanjuán, M.Á.; Zaragoza, A. Carbon Dioxide Uptake Estimation for Spanish Cement-Based Materials. Materials 2024, 17, 326. [Google Scholar] [CrossRef]
- Andersson, R.; Stripple, H.; Gustafsson, T.; Ljungkrantz, C. Carbonation as a method to improve climate performance for cement-based material. Cement Concr. Res. 2019, 124, 105819. [Google Scholar] [CrossRef]
- Witkowski, H.; Koniorczyk, M. The influence of pozzolanic additives on the carbonation rate and Life Cycle Inventory of concrete. Construct. Build. Mater. 2020, 254, 119301. [Google Scholar] [CrossRef]
- Jang, J.G.; Kim, G.M.; Kim, H.J.; Lee, H.K. Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials. Construct. Build. Mater. 2016, 127, 762–773. [Google Scholar] [CrossRef]
- Kwon, S.-J.; Wang, X.-Y. CO2 uptake model of lime-stone-powder-blended concrete due to carbonation. J. Build. Eng. 2021, 38, 102176. [Google Scholar] [CrossRef]
- Marinković, S.; Carević, V.; Dragaš, J. The role of service life in Life Cycle Assessment of concrete structures. J. Clean. Prod. 2021, 290, 125610. [Google Scholar] [CrossRef]
- EN 16757; Sustainability of Construction Works—Environmental Product Declarations—Product Category Rules for Concrete and Concrete Elements (Annex G). European Committee for Standardization (CEN): Brussels, Belgium, 2022.
- Pade, C.; Guimaraes, M. The CO2 uptake of concrete in a 100-year perspective. Cement Concr. Res. 2007, 37, 1348–1356. [Google Scholar] [CrossRef]
- Yang, K.-H.; Seo, E.-A.; Tae, S.-H. Carbonation and CO2 uptake of concrete. Environ. Impact Assess. Rev. 2014, 46, 43–52. [Google Scholar] [CrossRef]
- Fitzpatrick, D.; Richardson, M.; Nolan, E. Sequestration of carbon dioxide by concrete infrastructure: A preliminary investigation in Ireland. J. Sustain. Architect. Civ. Eng. 2015, 1, 66–77. [Google Scholar] [CrossRef]
- Xi, F.; Davis, S.J.; Ciais, P.; Crawford-Brown, D.; Guan, D.; Pade, C.; Shi, T.; Syddall, M.; Lv, J.; Ji, L.; et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 2016, 9, 880–883. [Google Scholar] [CrossRef]
- Andrade, C. Evaluation of the degree of carbonation of concretes in three environments. Construct. Build. Mater. 2020, 230, 116804. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- AzariJafari, H.; Guo, F.; Gregory, J.; Kirchain, R. Carbon uptake of concrete in the US pavement network. Resour. Conserv. Recycl 2021, 167, 105397. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Andrade, C.; Cheyrezy, M. Concrete carbonation tests in natural and accelerated conditions. Adv. Cement Res. 2003, 15, 171–180. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Piñeiro, A.; Rodríguez, O. Ground granulated blast furnace slag efficiency coefficient (k-value) in concrete. Applications and limits. Mater. Constr. 2011, 61, 303–313. [Google Scholar] [CrossRef]
- Gruyaert, E.; Heede, P.V.D.; Belie, N.D. Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient–effect of carbonation on the pore structure. Cement Concr. Compos. 2013, 35, 39–48. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Estévez, E.; Argiz, C.; del Barrio, D. Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cem. Concr. Compos. 2018, 90, 257–265. [Google Scholar] [CrossRef]
- Otieno, M.; Ikotun, J.; Ballim, Y. Experimental investigations on the effect of concrete quality, exposure conditions and duration of initial moist curing on carbona-tion rate in concretes exposed to urban, inland environment. Construct. Build. Mater. 2020, 246, 118443. [Google Scholar] [CrossRef]
- Mäkikouri, S.; Vares, S.; Korpijärvi, K.; Papakonstantinou, N. The carbon dioxide emissions reduction potential of carbon-dioide-cured alternative binder concrete. Recent Prog. Mater. 2021, 3, 1–34. [Google Scholar] [CrossRef]
- Benhelal, E.; Shamsaei, E.; Rashid, M.I. Challenges against CO2 abatement strategies in cement industry: A review. J. Environ. Sci. 2021, 104, 84–101. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.; Sanjuán, M.Á. Updating carbon storage capacity of Spanish cements. Sustainability 2018, 10, 4806. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zarogoza, A. Carbon dioxide uptake by mortars and concretes made with Portuguese cements. Appl. Sci. 2020, 10, 646. [Google Scholar] [CrossRef]
- Andrade, C.; Sanjuán, M.Á. Carbon dioxide uptake by pure Portland and blended cement pastes. Dev. Built Environ. 2021, 8, 100063. [Google Scholar] [CrossRef]
- Stripple, H.; Ljungkrantz, C.; Gustafsson, T. CO2 Uptake in Cement-Containing Products. In Background and Calculation Models for IPCC Implementation, 2nd ed.; Report Number: B 2309; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2021; pp. 1–77. Available online: https://www.ivl.se/download/18.34244ba71728fcb3f3f8f9/1622457897161/B2309.pdf (accessed on 15 February 2024).
- Younsi, A.; Turcry, P.; Aït-Mokhtar., A. Quantification of CO2 uptake of concretes with mineral additions after 10-year natural carbonation. J. Clean. Prod. 2022, 349, 131362. [Google Scholar] [CrossRef]
- Younsi, A. Long-term carbon dioxide sequestration by concretes with supplementary cementitious materials under indoor and outdoor exposure: Assessment as per a standardized model. J. Build. Eng. 2022, 51, 104306. [Google Scholar] [CrossRef]
- Menéndez, E.; Sanjuán, M.Á.; Recino, H. Study of Microstructure, Crystallographic Phases and Setting Time Evolution over Time of Portland Cement, Coarse Silica Fume, and Limestone (PC-SF-LS) Ternary Portland Cements. Crystals 2023, 13, 1289. [Google Scholar] [CrossRef]
- Zeraoui, A.; Maherzi, W.; Benzerzour, M.; Abriak, N.E.; Aouad, G. Development of Flash-Calcined Sediment and Blast Furnace Slag Ternary Binders. Buildings 2023, 13, 333. [Google Scholar] [CrossRef]
- Srinivas, D.; Dey, D.; Panda, B.; Sitharam, T.G. Printability, Thermal and Compressive Strength Properties of Cementitious Materials: A Comparative Study with Silica Fume and Limestone. Materials 2022, 15, 8607. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Dong, X.; Zhou, Z.; Long, J.; Lu, G.; Lei, H. Investigation on Roles of Packing Density and Water Film Thickness in Synergistic Effects of Slag and Silica Fume. Materials 2022, 15, 8978. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, X.; Cao, H. Empirical Compression Model of Ul-tra-High-Performance Concrete Considering the Effect of Cement Hydration on Particle Packing Characteristics. Materials 2023, 16, 4585. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, D.G.L.; Sousa, M.I.C.; Pelisser, F.; da Silva Rêgo, J.H.; Moragues Terrades, A.; Frías Rojas, M. Physical and Chemical Effects in Blended Cement Pastes Elaborated with Calcined Clay and Nanosilica. Materials 2023, 16, 1837. [Google Scholar] [CrossRef] [PubMed]
- Papatzani, S.; Paine, K. A Step by Step Methodology for Building Sustainable Cementitious Matrices. Appl. Sci. 2020, 10, 2955. [Google Scholar] [CrossRef]
- Kang, S.-H.; Hong, S.-G.; Moon, J. Performance Comparison between Densified and Undensified Silica Fume in Ultra-High Performance Fiber-Reinforced Concrete. Materials 2020, 13, 3901. [Google Scholar] [CrossRef]
- Li, P.P.; Brouwers, H.J.H.; Chen, W.; Yu, Q.L. Optimization and characterization of high-volume limestone powder in sustainable ultra-high-performance concrete. Constr. Build. Mater. 2020, 242, 118112. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Menéndez, E.; Recino, H. Mechanical Performance of Portland Cement, Coarse Silica Fume, and Limestone (PC-SF-LS) Ternary Portland Cements. Materials 2022, 15, 2933. [Google Scholar] [CrossRef]
- Richard, P.; Cheyrezy, M. Composition of reactive powder concretes. Cem. Concr. Res. 1995, 25, 1501–1511. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Andrade, C. Reactive Powder Concrete: Durability and Applications. Appl. Sci. 2021, 11, 5629. [Google Scholar] [CrossRef]
- Oertel, T.; Hutter, F.; Helbig, U.; Sextl, G. Amorphous silica in ultra-high performance concrete: First hour of hydration. Cem. Concr. Res. 2014, 58, 131–142. [Google Scholar] [CrossRef]
- EN 197-1; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Standard; The European Committee for Standardization (CEN): Brussels, Belgium, 2011.
- EN 196-2; Method of Testing Cement—Part 2: Chemical analysis of cement. The European Committee for Standardization (CEN): Brussels, Belgium, 2013.
- EN 196-1; Method of Testing Cement—Part 1: Determination of Strength. European Standard; The European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- RILEM Committee CPC-18, Measurement of Hardened Concrete Carbonation Depth, (1988) TC14-CPC; The International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM, from the Name in French): Champs-sur-Marne, France, 1988.
- CEN/TS 12390-10:2007; Testing Hardened Concrete. Part 10: Determination of the Relative Carbonation Resistance of Concrete, CEN, 2007. The European Committee for Standardization (CEN): Brussels, Belgium, 2007.
- Vogler, N.; Lindemann, M.; Drabetzki, P.; Kühne, H.C. Alternative pH-indicators for de-termination of carbonation depth on cement-based concretes. Cem. Concr. Compos. 2020, 109, 103565. [Google Scholar] [CrossRef]
- Schultheiß, A.L.; Patel, R.A.; Vogel, M.; Dehn, F. Comparative Analysis of Engineering Carbonation Model Extensions to Account for Pre-Existing Cracks. Materials 2023, 16, 6177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yio, M.; Wong, H.; Buenfeld, N. Development of more accurate methods for determining carbonation depth in cement-based materials. Cem. Concr. Res. 2024, 175, 107358. [Google Scholar] [CrossRef]
- Shi, Z.; Lothenbach, B.; Geiker, M.R.; Kaufmann, J.; Leemann, A.; Ferreiro, S.; Skibsted, J. Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cem. Concr. Res. 2016, 88, 60–72. [Google Scholar] [CrossRef]
- Rahman, A.A.; Glasser, F.P. Comparative studies of the carbonation of hydrated cements. Adv. Cem. Res. 1989, 2, 49–54. [Google Scholar] [CrossRef]
- Parrott, L.J.; Killoh, D.C. Carbonation in a 36-year-old, in-situ concrete. Cem. Concr. Res. 1989, 19, 649–656. [Google Scholar] [CrossRef]
- Zhang, Q. Mathematical modeling and numerical study of carbonation in porous concrete materials. Appl. Math. Comput. 2016, 281, 16–27. [Google Scholar] [CrossRef]
- Tuutti, K. Corrosion of Steel in Concrete-CBI Research 4, 1st ed.; Swedish Cement and Concrete Research Institute: Stockholm, Sweden, 1982; pp. 1–468. [Google Scholar]
- Saetta, A.V.; Schrefler, B.A.; Vitaliani, R.V. The carbonation of concrete and the mechanism of moisture, heat and carbon-dioxide flow-through porous materials. Cem. Concr. Res. 1993, 23, 761–772. [Google Scholar] [CrossRef]
- EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- EN 206:2013+A1:2016; Concrete—Specification, Performance, Production and Conformity. CEN: Brussels, Belgium, 2016.
- Rivera, R.A.; Sanjuán, M.Á.; Martín, D.A.; Costafreda, J.L. Performance of Ground Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Exposed to Natural Carbonation. Materials 2021, 14, 3239. [Google Scholar] [CrossRef]
Chemical Composition (%) | CEM I | H | L | Physical Properties of CEM I | |
---|---|---|---|---|---|
SiO2 | 20.0 | 96.1 | 3.4 | Specific gravity (g/cm3) | 3.11 |
Al2O3 | 4.5 | 0.2 | 1.6 | Initial setting time (min) | 160 |
Fe2O3 | 2.7 | 0.1 | 0.4 | Final setting time (min) | 240 |
CaO | 63.0 | 0.4 | 46.3 | Volume expansion (mm) | 0.0 |
MgO | 1.9 | 0.1 | 0.3 | Specific surface Blaine (cm2/g) | 3811 |
SO3 | 3.1 | 0.1 | 0.1 | ||
K2O | 0.9 | 0.4 | 0.2 | Compressive Strength (MPa) | |
Ti2O5 | 0.2 | 0.0 | 0.1 | 1 days | 14.32 |
P2O5 | 0.1 | 0.0 | 0.0 | 7 days | 50.50 |
LOI | 3.2 | 2.4 | 47.5 | 14 days | 55.28 |
Na2O | 0.3 | 0.2 | 0.1 | 28 days | 59.25 |
CI− | 0.1 | 0.0 | 0.0 |
Cement Mix Code | CEM I (%) | H (%) | Total of Limestone (%) | 10% Retained Limestone (%) (8001 cm2/g) | 20% Retained Limestone (%) (25,857 cm2/g) | 50% Retained Limestone (%) (25,954 cm2/g) |
---|---|---|---|---|---|---|
Reference | 100 | 0 | 0 | 0 | 0 | 0 |
H3L15-0-0 | 82 | 3 | 15 | 15 | 0 | 0 |
H3L20-0-0 | 77 | 20 | 20 | 0 | 0 | |
H3L0-15-0 | 82 | 15 | 0 | 15 | 0 | |
H3L10-10-10 | 67 | 30 | 10 | 10 | 10 | |
H5L0-0-0 | 95 | 5 | 0 | 0 | 0 | 0 |
H5L0-15-0 | 80 | 15 | 0 | 15 | 0 | |
H5L15-0-0 | 80 | 15 | 15 | 0 | 0 | |
H7L0-15-0 | 78 | 7 | 15 | 0 | 15 | 0 |
H7L15-0-0 | 78 | 15 | 15 | 0 | 0 | |
H7L20-0-0 | 73 | 20 | 20 | 0 | 0 | |
H7L10-10-0 | 68 | 25 | 10 | 10 | 5 |
Environmental Requirement for Minimum Concrete Cover Depth (mm) | Structural Class | |||||
---|---|---|---|---|---|---|
Exposure Class: Corrosion Induced by Carbonation | S1 | S2 | S3 | S4 | S5 | S6 |
XC1—Dry or permanently wet | 10 | 10 | 10 | 15 | 20 | 25 |
XC2—Wet, rarely dry | 10 | 15 | 20 | 25 | 30 | 35 |
XC3—Moderate humidity | 10 | 15 | 20 | 25 | 30 | 35 |
XC4—Cyclic wet and dry | 15 | 20 | 25 | 30 | 35 | 40 |
Curing Time/Carbonation Depth (mm) | |||
---|---|---|---|
Mortar Code | 0 | 3 | 28 |
Reference | 7.8 | 4.3 | 3.6 |
H3L0-15-0 | 5.7 | 4.3 | 5.0 |
H3L10-10-0 | 7.8 | 5.7 | 5.0 |
H3L15-0-0 | 8.5 | 4.3 | 5.0 |
H3L20-0-0 | 10.7 | 7.1 | 5.0 |
H5L0-0-0 | 5.0 | 4.3 | 2.8 |
H5L0-15-0 | 7.8 | 4.6 | 4.3 |
H5L15-0-0 | 9.3 | 4.3 | 4.3 |
H7L0-15-0 | 5.7 | 4.3 | 4.3 |
H7L10-10-0 | 7.1 | 5.0 | 6.4 |
H7L15-0-0 | 12.8 | 5.0 | 5.0 |
H7L20-0-0 | 9.3 | 4.3 | 5.7 |
Exposure Resistance Classes (ERC) | XRC 0.5 | XRC 1 | XRC 2 | XRC 3 | XRC 4 | XRC 5 | XRC 6 | XRC 7 |
---|---|---|---|---|---|---|---|---|
Cover (mm) | 10 | 10 | 15 | 20 | 25 | 25 | 35 | 40 |
Maximum carbonation coefficient (mm/y0.5) | 0.6 | 1.2 | 2.4 | 2.7 | 3.6 | 4.5 | 5.4 | 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanjuán, M.Á.; Menéndez, E.; Recino, H. Carbonation Resistance of Ternary Portland Cements Made with Silica Fume and Limestone. Materials 2024, 17, 2705. https://doi.org/10.3390/ma17112705
Sanjuán MÁ, Menéndez E, Recino H. Carbonation Resistance of Ternary Portland Cements Made with Silica Fume and Limestone. Materials. 2024; 17(11):2705. https://doi.org/10.3390/ma17112705
Chicago/Turabian StyleSanjuán, Miguel Ángel, Esperanza Menéndez, and Hairon Recino. 2024. "Carbonation Resistance of Ternary Portland Cements Made with Silica Fume and Limestone" Materials 17, no. 11: 2705. https://doi.org/10.3390/ma17112705
APA StyleSanjuán, M. Á., Menéndez, E., & Recino, H. (2024). Carbonation Resistance of Ternary Portland Cements Made with Silica Fume and Limestone. Materials, 17(11), 2705. https://doi.org/10.3390/ma17112705