Effect of Carbon Fiber Paper with Thickness Gradient on Electromagnetic Shielding Performance of X-Band
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Scheme of Carbon Fiber Paper with Thickness Gradient
2.3. Characterization
3. Results and Discussion
3.1. Microstructure and Light Transmittance Analysis
3.2. Electrical Properties and Electromagnetic Shielding Properties
3.3. Joule Heating Properties
3.4. Practical Application Performance of Carbon Fiber Paper
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Zhao, D.; Ge, H.Y.; Wang, J. Graphene oxide-deposited carbon fiber/cement composites for electromagnetic interference shielding application. Constr. Build. Mater. 2015, 84, 66–72. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Li, M.; Zhang, M.; Zhao, Y.; Jiang, S.; Xu, Q.; Han, F.; Zhu, J.; Liu, L.; Ge, A. Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding. Carbohydr. Polym. 2022, 286, 119306. [Google Scholar] [CrossRef]
- Li, Q.; Tan, J.; Wu, Z.; Wang, L.; You, W.; Wu, L.; Che, R. Hierarchical magnetic-dielectric synergistic Co/CoO/RGO microspheres with excellent microwave absorption performance covering the whole X band. Carbon 2023, 201, 150–160. [Google Scholar] [CrossRef]
- Li, X.; Qu, Y.; Wang, X.; Bian, H.; Wu, W.; Dai, H. Flexible graphene/silver nanoparticles/aluminum film paper for high-performance electromagnetic interference shielding. Mater. Des. 2022, 213, 110296. [Google Scholar] [CrossRef]
- Cao, W.T.; Chen, F.F.; Zhu, Y.J.; Zhang, Y.G.; Jiang, Y.Y.; Ma, M.G.; Chen, F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano 2018, 12, 4583–4593. [Google Scholar] [CrossRef] [PubMed]
- Ameli, A.; Jung, P.U.; Park, C.B. Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 2013, 60, 379–391. [Google Scholar] [CrossRef]
- Wu, F.; Qiang, S.; Zhu, X.D.; Jiao, W.; Liu, L.; Yu, J.; Liu, Y.T.; Ding, B. Fibrous MXene Aerogels with Tunable Pore Structures for High-Efficiency Desalination of Contaminated Seawater. Nanomicro Lett. 2023, 15, 71. [Google Scholar] [CrossRef]
- Zhu, R.Y.; Cai, M.R.; Fu, T.T.; Yin, D.G.; Peng, H.L.Y.; Liao, S.L.; Du, Y.J.; Kong, J.H.; Ni, J.; Yin, X.B. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics 2023, 15, 1599. [Google Scholar] [CrossRef]
- Singh, B.P.; Saket, D.K.; Singh, A.P.; Pati, S.; Gupta, T.K.; Singh, V.N.; Dhakate, S.R.; Dhawan, S.K.; Kotnala, R.K.; Mathur, R.B. Microwave shielding properties of Co/Ni attached to single walled carbon nanotubes. J. Mater. Chem. A 2015, 3, 13203–13209. [Google Scholar] [CrossRef]
- Mondal, D.; Paul, B.K.; Bhattacharya, D.; Ghoshal, D.; Biswas, S.; Das, K.; Das, S. Copper-doped alpha-MnO2 nano-sphere: Metamaterial for enhanced supercapacitor and microwave shielding applications. J. Mater. Chem. C 2021, 9, 5132–5147. [Google Scholar] [CrossRef]
- Wang, R.; Xu, H.; Zhang, K.; Wei, S.; Deyong, W. High-quality Al@Fe-MOF prepared using Fe-MOF as a micro-reactor to improve adsorption performance for selenite. J. Hazard. Mater. 2019, 364, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Lumnitzer, E.; Jurgovska, E.L.; Andrejiova, M.; Kralikova, R. Application of Metal Shielding Materials to Protect Buildings Occupants from Exposure to the Electromagnetic Fields. Materials 2023, 16, 5438. [Google Scholar] [CrossRef] [PubMed]
- Yim, Y.J.; Lee, J.J.; Tugirumubano, A.; Go, S.H.; Kim, H.G.; Kwac, L.K. Electromagnetic Interference Shielding Behavior of Magnetic Carbon Fibers Prepared by Electroless FeCoNi-Plating. Materials 2021, 14, 3774. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Kim, S.-H.; Park, S. Effects of the Carbon Fiber-Carbon Microcoil Hybrid Formation on the Effectiveness of Electromagnetic Wave Shielding on Carbon Fibers-Based Fabrics. Materials 2018, 11, 2344. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Huang, Y.; Wang, J.; Du, X.; Hu, L.; Li, T.; Sun, X. The flexible carbon fibers@ZIF–67 decorated with MoS2 layers towards tunable and high–performance electromagnetic wave absorption. Compos. Part B Eng. 2022, 239, 109965. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Liu, Q.; Wang, B.; Wei, W.; Wu, H.; Xu, Z.; Li, S.; Huang, F.; Zhang, H. Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution. Int. J. Miner. Metall. Mater. 2023, 30, 494–503. [Google Scholar] [CrossRef]
- Hong, J.; Xu, P. Electromagnetic Interference Shielding Anisotropy of Unidirectional CFRP Composites. Materials 2021, 14, 1907. [Google Scholar] [CrossRef]
- Wang, X.; Lv, X.; Liu, Z.; Zhang, H.; Liu, M.; Xu, C.; Zhou, X.; Yuan, M.; Yang, L.; You, W.; et al. Multi-interfacial 1D magnetic ferrite@C fibers for broadband microwave absorption. Mater. Today Phys. 2023, 35, 101140. [Google Scholar] [CrossRef]
- Yang, Y.; Wan, C.; Huang, Q.; Hua, J. Pore-Rich Cellulose-Derived Carbon Fiber@Graphene Core-Shell Composites for Electromagnetic Interference Shielding. Nanomaterials 2022, 13, 174. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, C.H.; Wang, Y.; Mi, R.Z.; Gao, X.P. Preparation and simulation performance of light carbon fiber paper-based electromagnetic shielding materials. Carbon Lett. 2023. [Google Scholar] [CrossRef]
- Kwon, H.J.; Park, J.H.; Suh, S.J. Multilayered Cu/NiFe thin films for electromagnetic interference shielding at high frequency. J. Alloys Compd. 2022, 914, 165330. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, C.; Wang, Y.; Song, M.; Guo, J.; Wang, W.; Gao, X. Multi-layer carbon fiber paper @reduced graphene oxide/Co/C composite with adjustable electromagnetic interference shielding properties. Carbon 2024, 217, 118655. [Google Scholar] [CrossRef]
- Huang, M.L.; Luo, C.L.; Sun, C.; Zhao, K.Y.; Weng, Y.X.; Wang, M. Achieving absorption-type microwave shielding performance in polydimethylsiloxane/carbon nanotube sandwiched composites via regulating microwave interference effect. Compos. Part A Appl. Sci. Manuf. 2023, 169, 107532. [Google Scholar] [CrossRef]
- Gaoui, B.; Hadjadj, A.; Kious, M. Enhancement of the shielding effectiveness of multilayer materials by gradient thickness in the stacked layers. J. Mater. Sci.-Mater. Electron. 2017, 28, 11292–11299. [Google Scholar] [CrossRef]
- Sun, J.T.; Zhou, D. Advances in Graphene-Polymer Nanocomposite Foams for Electromagnetic Interference Shielding. Polymers 2023, 15, 3235. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.X.; Gou, J.R.; Zhang, X.; Ding, L.; Wang, H.H. Sandwich-structured Ti3C2Tx-MXene/reduced-graphene-oxide composite membranes for high-performance electromagnetic interference and infrared shielding. J. Membr. Sci. 2023, 675, 121560. [Google Scholar] [CrossRef]
- Yazdi, S.J.M.; Lisitski, A.; Pack, S.; Hiziroglu, H.R.; Baqersad, J. Analysis of Shielding Effectiveness against Electromagnetic Interference (EMI) for Metal-Coated Polymeric Materials. Polymers 2023, 15, 1911. [Google Scholar] [CrossRef]
- Chen, X.; Gu, Y.; Liang, J.; Bai, M.; Wang, S.; Li, M.; Zhang, Z. Enhanced microwave shielding effectiveness and suppressed reflection of chopped carbon fiber felt by electrostatic flocking of carbon fiber. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106099. [Google Scholar] [CrossRef]
- Koo, K.; Won, E.H.; Lee, S.H.; Park, Y.M.; Yu, J.Y. Electromagnetic Interference (EMI) Shielding Effectiveness (SE) of PET Fabrics Plated with Stainless Steel Thin Layer by Sputtering. Text. Sci. Eng. 2006, 43, 101–106. [Google Scholar]
- Sharma, S.; Lee, J.; Dang, T.T.; Hur, S.H.; Choi, W.M.; Chung, J.S. Ultrathin freestanding PDA-Doped rGO/MWCNT composite paper for electromagnetic interference shielding applications. Chem. Eng. J. 2022, 430, 132808. [Google Scholar] [CrossRef]
- Tao, B.R.; Li, J.; Miao, F.J.; Zang, Y. Carbon Cloth Loaded NiCo2O4 Nano-Arrays to Construct Co-MOF@GO Nanocubes: A High-Performance Electrochemical Sensor for Non-Enzymatic Glucose. IEEE Sens. J. 2022, 22, 13898–13907. [Google Scholar] [CrossRef]
- Wang, K.F.; Chen, C.; Zheng, Q.T.; Xiong, J.; Liu, H.Z.; Yang, L.; Chen, Y.J.; Li, H. Multifunctional recycled carbon fiber-Ti3C2Tx MXene paper with superior electromagnetic interference shielding and photo/electro-thermal conversion performances. Carbon 2022, 197, 87–97. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Li, C.B.; Xiong, Y.F.; Zhang, H.B.; Raza, H.; Ullah, S.; Wu, J.Y.; Zheng, G.P.; Cao, Q.; Zhang, D.Q.; et al. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nano-Micro Lett. 2022, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, G.; Lam, S.S.; Ansar, S.; Jung, S.-C.; Ge, S.; Hou, L.; Fan, Z.; Wang, F.; Fan, W. A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications. Chem. Eng. J. 2023, 471, 144679. [Google Scholar] [CrossRef]
- Wang, X.F.; Lei, Z.W.; Ma, X.D.; He, G.F.; Xu, T.; Tan, J.; Wang, L.L.; Zhang, X.S.; Qu, L.J.; Zhang, X.J. A lightweight MXene-Coated nonwoven fabric with excellent flame Retardancy, EMI Shielding, and Electrothermal/Photothermal conversion for wearable heater. Chem. Eng. J. 2022, 430, 132605. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Huang, Z.; Cheng, J.; Wang, H.; Zhang, D.; Ba, X.; Zheng, G.; Yan, M.; Cao, M. Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Mater. 2022, 8, 327–334. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Chang, R.; Shi, M.; Sun, D. Construction of alternating multilayer MXene/WPU thin films with excellent EMI shielding performance and mechanical properties. J. Alloys Compd. 2023, 956, 170367. [Google Scholar] [CrossRef]
- Wang, B.; Jia, P.; He, R.; Song, L.; Hu, Y. Multilayer joule heating and electromagnetic interference shielding composite fabric with high interfacial durability. J. Colloid Interface Sci. 2023, 633, 1069–1082. [Google Scholar] [CrossRef]
- Wang, Q.-W.; Zhang, H.-B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.; Yang, R.; Koratkar, N.; Yu, Z.-Z. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Adv. Funct. Mater. 2019, 29, 1806819. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, T.; Zhang, Y.; Duan, C.; Zhang, Z.; Zhou, Q.; Xiong, Q.; Zhao, M.; Wang, B.; Ni, Y. Multifunctional Conductive Material Based on Intelligent Porous Paper Used in Conjunction with a Vitrimer for Electromagnetic Shielding, Sensing, Joule Heating, and Antibacterial Properties. ACS Appl. Mater. Interfaces 2023, 15, 33763–33773. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Y.; Liu, C.; Gao, X. Study on the influence of carbon fiber paper modification on electromagnetic shielding performance and simulation. Surf. Interfaces 2024, 44, 103825. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Song, M.; Liang, W.; Gao, X.; Zhu, B. Effect of Carbon Fiber Paper with Thickness Gradient on Electromagnetic Shielding Performance of X-Band. Materials 2024, 17, 2767. https://doi.org/10.3390/ma17112767
Liu Z, Song M, Liang W, Gao X, Zhu B. Effect of Carbon Fiber Paper with Thickness Gradient on Electromagnetic Shielding Performance of X-Band. Materials. 2024; 17(11):2767. https://doi.org/10.3390/ma17112767
Chicago/Turabian StyleLiu, Zhi, Meiping Song, Weiqi Liang, Xueping Gao, and Bo Zhu. 2024. "Effect of Carbon Fiber Paper with Thickness Gradient on Electromagnetic Shielding Performance of X-Band" Materials 17, no. 11: 2767. https://doi.org/10.3390/ma17112767
APA StyleLiu, Z., Song, M., Liang, W., Gao, X., & Zhu, B. (2024). Effect of Carbon Fiber Paper with Thickness Gradient on Electromagnetic Shielding Performance of X-Band. Materials, 17(11), 2767. https://doi.org/10.3390/ma17112767