Understanding the Structural and Catalytic Properties of Al(IV)-2 Acidic Sites of ZSM-5
Abstract
:1. Introduction
2. Experimental Section
2.1. Zeolite Syntheses
2.2. Catalyst Characterization
2.3. Catalytic Activity Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muraza, O.; Galadima, A. Aquathermolysis of heavy oil: A review and perspective on catalyst development. Fuel 2015, 157, 219–231. [Google Scholar] [CrossRef]
- Corma, A.; Mengual, J.; Miguel, P.J. Steam catalytic cracking of naphtha over ZSM-5 zeolite for production of propene and ethene: Micro and macroscopic implications of the presence of steam. Appl. Catal. A Gen. 2012, 417, 220–235. [Google Scholar] [CrossRef]
- Diao, Z.; Wang, L.; Zhang, X.; Liu, G. Catalytic cracking of supercritical n-dodecane over meso-HZSM-5@Al-MCM-41 zeolites. Chem. Eng. Sci. 2015, 135, 452–460. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, H.; Zhang, Q.; Yan, W. Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane. J. Solid State Chem. 2017, 251, 7–13. [Google Scholar] [CrossRef]
- Argauer, R.J.; Landolt, G.R. Crystalline Zeolite ZSM-5 and Method of Preparing the Same. US Patent 3,702,886, 1972. [Google Scholar]
- Degnan, T.F.; Chitnis, G.K.; Schipper, P.H. History of ZSM-5 fluid catalytic cracking additive development at Mobil. Microporous Mesoporous Mater. 2000, 35, 245–252. [Google Scholar] [CrossRef]
- Ono, Y. Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM-5 Zeolites. Catal. Rev. 1992, 34, 179–226. [Google Scholar] [CrossRef]
- Bensafi, B.; Chouat, N.; Djafri, F. The universal zeolite ZSM-5: Structure and synthesis strategies. A review. Coord. Chem. Rev. 2023, 496, 215397. [Google Scholar] [CrossRef]
- Dědeček, J.; Sobalík, Z.; Wichterlová, B. Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis. Catal. Rev. 2012, 54, 135–223. [Google Scholar] [CrossRef]
- Jones, A.J.; Carr, R.T.; Zones, S.I.; Iglesia, E. Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration, and location of framework heteroatoms. J. Catal. 2014, 312, 58–68. [Google Scholar] [CrossRef]
- Chen, K.; Gan, Z.; Horstmeier, S.; White, J.L. Distribution of Aluminum Species in Zeolite Catalysts: 27Al NMR of Framework, Partially-Coordinated Framework, and Non-Framework Moieties. J. Am. Chem. Soc. 2021, 143, 6669–6680. [Google Scholar] [CrossRef]
- Dusselier, M.; Davis, M.E. Small-pore zeolites: Synthesis and catalysis. Chem. Rev. 2018, 118, 5265–5329. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.E. Zeolites from a materials chemistry perspective. Chem. Mater. 2014, 26, 239–245. [Google Scholar] [CrossRef]
- Davis, M.E.; Lobo, R.F. Zeolite and molecular sieve synthesis. Chem. Mater. 1992, 4, 756–768. [Google Scholar] [CrossRef]
- Davis, R.J. New perspectives on basic zeolites as catalysts and catalyst supports. J. Catal. 2003, 216, 396–405. [Google Scholar] [CrossRef]
- Caratzoulas, S.; Davis, M.E.; Gorte, R.J.; Gounder, R.; Lobo, R.F.; Nikolakis, V.; Sandler, S.I.; Snyder, M.A.; Tsapatsis, M.; Vlachos, D.G. Challenges of and insights into acid-catalyzed transformations of sugars. J. Phys. Chem. C 2014, 118, 22815–22833. [Google Scholar] [CrossRef]
- Haw, J.F.; Nicholas, J.B.; Xu, T.; Beck, L.W.; Ferguson, D.B. Physical Organic Chemistry of Solid Acids: Lessons from in Situ NMR and Theoretical Chemistry. Acc. Chem. Res. 1996, 29, 259–267. [Google Scholar] [CrossRef]
- Hunger, M. Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites. Solid State Nucl. Magn. Reson. 1996, 6, 1–29. [Google Scholar] [CrossRef]
- Pashkova, V.; Sklenak, S.; Klein, P.; Urbanova, M.; Dědeček, J. Location of Framework Al Atoms in the Channels of ZSM-5: Effect of the (Hydrothermal) Synthesis. Chem. Eur. J. 2016, 22, 3937–3941. [Google Scholar] [CrossRef] [PubMed]
- Schallmoser, S.; Ikuno, T.; Wagenhofer, M.F.; Kolvenbach, R.; Haller, G.L.; Sanchez-Sanchez, M.; Lercher, J.A. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking. J. Catal. 2014, 316, 93–102. [Google Scholar] [CrossRef]
- Chen, K.; Abdolrhamani, M.; Sheets, E.; Freeman, J.; Ward, G.; White, J.L. Direct Detection of Multiple Acidic Proton Sites in Zeolite HZSM-5. J. Am. Chem. Soc. 2017, 139, 18698–18704. [Google Scholar] [CrossRef]
- Cavadini, S.; Lupulescu, A.; Antonijevic, S.; Bodenhausen, G. Nitrogen-14 NMR Spectroscopy Using Residual Dipolar Splittings in Solids. J. Am. Chem. Soc. 2006, 128, 7706–7707. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z. Measuring Amide Nitrogen Quadrupolar Coupling by High-Resolution 14N/13C NMR Correlation under Magic-Angle Spinning. J. Am. Chem. Soc. 2006, 128, 6040–6041. [Google Scholar] [CrossRef] [PubMed]
- Tricot, G.; Trébosc, J.; Pourpoint, F.; Gauvin, R.; Delevoye, L. Chapter Four—The D-HMQC MAS-NMR Technique: An Efficient Tool for the Editing of Through-Space Correlation Spectra Between Quadrupolar and Spin-1/2 (31P, 29Si, 1H, 13C) Nuclei. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 81, pp. 145–184. [Google Scholar]
- Chen, K.; Horstmeier, S.; Nguyen, V.T.; Wang, B.; Crossley, S.P.; Pham, T.; Gan, Z.; Hung, I.; White, J.L. Structure and Catalytic Characterization of a Second Framework Al(IV) Site in Zeolite Catalysts Revealed by NMR at 35.2 T. J. Am. Chem. Soc. 2020, 142, 7514–7523. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zornes, A.; Nguyen, V.; Wang, B.; Gan, Z.; Crossley, S.P.; White, J.L. 17O Labeling Reveals Paired Active Sites in Zeolite Catalysts. J. Am. Chem. Soc. 2022, 144, 16916–16929. [Google Scholar] [CrossRef] [PubMed]
- van Bokhoven, J.A.; Lee, T.L.; Drakopoulos, M.; Lamberti, C.; Thieß, S.; Zegenhagen, J. Determining the aluminum occupancy on the active T-sites in zeolites using X-ray standing waves. Nat. Mater. 2008, 7, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Vjunov, A.; Fulton, J.L.; Huthwelker, T.; Pin, S.; Mei, D.; Schenter, G.K.; Govind, N.; Camaioni, D.M.; Hu, J.Z.; Lercher, J.A. Quantitatively Probing the Al Distribution in Zeolites. J. Am. Chem. Soc. 2014, 136, 8296–8306. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, T.; Mochizuki, H.; Namba, S.; Kondo, J.N.; Tatsumi, T. Control of the Al Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-State NMR Technique and Catalytic Properties. J. Phys. Chem. C 2015, 119, 15303–15315. [Google Scholar] [CrossRef]
- Park, S.; Biligetu, T.; Wang, Y.; Nishitoba, T.; Kondo, J.N.; Yokoi, T. Acidic and catalytic properties of ZSM-5 zeolites with different Al distributions. Catal. Today 2018, 303, 64–70. [Google Scholar] [CrossRef]
- Biligetu, T.; Wang, Y.; Nishitoba, T.; Otomo, R.; Park, S.; Mochizuki, H.; Kondo, J.N.; Tatsumi, T.; Yokoi, T. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols. J. Catal. 2017, 353, 1–10. [Google Scholar] [CrossRef]
- Hunger, M.; Anderson, M.W.; Ojo, A.; Pfeifer, H. Study of the geometry and location of the bridging OH groups in aluminosilicate and silicoaluminophosphate type zeolites using 1H MAS NMR sideband analysis and CP/MAS NMR. Microporous Mater. 1993, 1, 17–32. [Google Scholar] [CrossRef]
- Hunger, M.; Ernst, S.; Steuernagel, S.; Weitkamp, J.P.D. High-field 1H MAS NMR investigations of acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H-ZSM-58, and H-MCM-22. Microporous Mater. 1996, 6, 349–353. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, J.; Dai, W.; Hunger, M. Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl. Magn. Reson. 2011, 39, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Ernst, H.; Freude, D.; Wolf, I. Multinuclear solid-state NMR studies of Brønsted sites in zeolites. Chem. Phys. Lett. 1993, 212, 588–596. [Google Scholar] [CrossRef]
- Schroeder, C.; Siozios, V.; Mück-Lichtenfeld, C.; Hunger, M.; Hansen, M.R.; Koller, H. Hydrogen Bond Formation of Brønsted Acid Sites in Zeolites. Chem. Mater. 2020, 32, 1564–1574. [Google Scholar] [CrossRef]
- Schroeder, C.; Mück-Lichtenfeld, C.; Xu, L.; Grosso-Giordano, N.A.; Okrut, A.; Chen, C.Y.; Zones, S.I.; Katz, A.; Hansen, M.R.; Koller, H. A Stable Silanol Triad in the Zeolite Catalyst SSZ-70. Angew. Chem. Inter. Ed. 2020, 59, 10939–10943. [Google Scholar] [CrossRef]
- Shantz, D.F.; Schmedt auf der Günne, J.; Koller, H.; Lobo, R.F. Multiple-Quantum 1H MAS NMR Studies of Defect Sites in As-Made All-Silica ZSM-12 Zeolite. J. Am. Chem. Soc. 2000, 122, 6659–6663. [Google Scholar] [CrossRef]
- Haouas, M.; Taulelle, F.; Martineau, C. Recent advances in the application of 27Al NMR spectroscopy to materials science. Prog. Nucl. Magn. Reson. Spectrosc. 2016, 94, 11–36. [Google Scholar] [CrossRef]
- Bhering, D.L.; Ramírez-Solís, A.; Mota, C.J.A. A Density Functional Theory Based Approach to Extraframework Aluminum Species in Zeolites. J. Phys. Chem. B 2003, 107, 4342–4347. [Google Scholar] [CrossRef]
- Catana, G.; Baetens, D.; Mommaerts, T.; Schoonheydt, R.A.; Weckhuysen, B.M. Relating Structure and Chemical Composition with Lewis Acidity in Zeolites: A Spectroscopic Study with Probe Molecules. J. Phys. Chem. B 2001, 105, 4904–4911. [Google Scholar] [CrossRef]
- Busca, G. Acidity and basicity of zeolites: A fundamental approach. Microporous Mesoporous Mater. 2017, 254, 3–16. [Google Scholar] [CrossRef]
- Wang, Q.L.; Giannetto, G.; Guisnet, M. Dealumination of zeolites III. Effect of extra-framework aluminum species on the activity, selectivity, and stability of Y zeolites in n-heptane cracking. J. Catal. 1991, 130, 471–482. [Google Scholar] [CrossRef]
- Tarach, K.A.; Góra-Marek, K.; Martinez-Triguero, J.; Melián-Cabrera, I. Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catal. Sci. Technol. 2017, 7, 858–873. [Google Scholar] [CrossRef]
- Vogt, E.T.C.; Weckhuysen, B.M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 2015, 44, 7342–7370. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Planelles, J.; Sanchez-Marin, J.; Tomas, F. The role of different types of acid site in the cracking of alkanes on zeolite catalysts. J. Catal. 1985, 93, 30–37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Zhang, L.; Ma, H.; Wang, Y.; Liu, X. Understanding the Structural and Catalytic Properties of Al(IV)-2 Acidic Sites of ZSM-5. Materials 2024, 17, 2824. https://doi.org/10.3390/ma17122824
Tong Y, Zhang L, Ma H, Wang Y, Liu X. Understanding the Structural and Catalytic Properties of Al(IV)-2 Acidic Sites of ZSM-5. Materials. 2024; 17(12):2824. https://doi.org/10.3390/ma17122824
Chicago/Turabian StyleTong, Yan, Li Zhang, Hong Ma, Yi Wang, and Xiaolong Liu. 2024. "Understanding the Structural and Catalytic Properties of Al(IV)-2 Acidic Sites of ZSM-5" Materials 17, no. 12: 2824. https://doi.org/10.3390/ma17122824
APA StyleTong, Y., Zhang, L., Ma, H., Wang, Y., & Liu, X. (2024). Understanding the Structural and Catalytic Properties of Al(IV)-2 Acidic Sites of ZSM-5. Materials, 17(12), 2824. https://doi.org/10.3390/ma17122824