Electrochemical Polishing of Ti and Ti6Al4V Alloy in Non-Aqueous Solution of Sulfuric Acid
Abstract
:1. Introduction
- Fluoric acid-based electrolytes: fluoric acid, sulfuric acid, and acetic acid [22];
2. Materials and Methods
2.1. Surface Morphology Analysis
2.2. Wettability
2.3. Roughness
3. Results and Discussion
3.1. Surface Morphology
3.2. Roughness
3.3. Contact Angle
3.4. Implant System Element Electropolishing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferracane, J.L. Materials in Dentistry: Principles and Applications; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; ISBN 9780781727334. [Google Scholar]
- Nicholson, J.W. Titanium Alloys for Dental Implants: A Review. Prosthesis 2020, 2, 100–116. [Google Scholar] [CrossRef]
- Hong, D.G.K.; Oh, J.H. Recent Advances in Dental Implants. Maxillofac. Plast. Reconstr. Surg. 2017, 39, 33. [Google Scholar] [CrossRef] [PubMed]
- Okuniewski, W.; Walczak, M.; Szala, M. Effects of Shot Peening and Electropolishing Treatment on the Properties of Additively and Conventionally Manufactured Ti6Al4V Alloy: A Review. Materials 2024, 17, 934. [Google Scholar] [CrossRef] [PubMed]
- Tsoeunyane, G.M.; Mathe, N.; Tshabalala, L.; Makhatha, M.E. Electropolishing of Additively Manufactured Ti-6Al-4V Surfaces in Nontoxic Electrolyte Solution. Adv. Mater. Sci. Eng. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Klein, G.L. Aluminum Toxicity to Bone: A Multisystem Effect? Osteoporos. Sarcopenia 2019, 5, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Elias, C.N.; Fernandes, D.J.; De Souza, F.M.; Monteiro, E.D.S.; Biasi, R.S. De Mechanical and Clinical Properties of Titanium and Titanium-Based Alloys (Ti G2, Ti G4 Cold Worked Nanostructured and Ti G5) for Biomedical Applications. J. Mater. Res. Technol. 2019, 8, 1060–1069. [Google Scholar] [CrossRef]
- Thyssen, J.P.; Jakobsen, S.S.; Engkilde, K.; Johansen, J.D.; Søballe, K.; Menné, T. The Association between Metal Allergy, Total Hip Arthroplasty, and Revision. Acta Orthop. 2009, 80, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Wu, W.; Wang, C.; Yu, Y.; Zhong, B.; Wang, Z.; Wang, T.; Fu, J.; Guo, J. Material Removal and Surface Integrity Analysis of Ti6Al4V Alloy after Polishing by Flexible Tools with Different Rigidity. Materials 2022, 15, 1642. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Fang, F. Investigation of Electrochemical Properties of Electropolishing Co–Cr Dental Alloy. J. Appl. Electrochem. 2020, 50, 367–381. [Google Scholar] [CrossRef]
- Costa, R.C.; Abdo, V.L.; Mendes, P.H.C.; Mota-Veloso, I.; Bertolini, M.; Mathew, M.T.; Barāo, V.A.R.; Souza, J.G.S. Microbial Corrosion in Titanium-Based Dental Implants: How Tiny Bacteria Can Create a Big Problem? J. Bio Tribo Corros. 2021, 7, 1–22. [Google Scholar] [CrossRef]
- Yi, R.; Ji, J.; Zhan, Z.; Deng, H. Mechanism Study of Electropolishing from the Perspective of Etching Isotropy. J. Mater. Process. Technol. 2022, 305, 117599. [Google Scholar] [CrossRef]
- Acquesta, A.; Monetta, T.; Franchitti, S.; Borrelli, R.; Viscusi, A.; Perna, A.S.; Penta, F.; Esposito, L.; Carrino, L. Green Electrochemical Polishing of EBM Ti6Al4V Samples with Preliminary Fatigue Results. Int. J. Adv. Manuf. Technol. 2023, 126, 4269–4282. [Google Scholar] [CrossRef]
- Simka, W.; Kaczmarek, M.; Baron-Wiecheć, A.; Nawrat, G.; Marciniak, J.; Zak, J. Electropolishing and Passivation of NiTi Shape Memory Alloy. Electrochim. Acta 2010, 55, 2437–2441. [Google Scholar] [CrossRef]
- Chaghazardi, Z.; Wüthrich, R. Review—Electropolishing of Additive Manufactured Metal Parts. J. Electrochem. Soc. 2022, 169, 043510. [Google Scholar] [CrossRef]
- Wynick, G.L.; Boehlert, C.J. Use of Electropolishing for Enhanced Metallic Specimen Preparation for Electron Backscatter Diffraction Analysis. Mater. Charact. 2005, 55, 190–202. [Google Scholar] [CrossRef]
- Poznyak, A.; Knörnschild, G.; Hoha, A.; Pligovka, A. Porous and Ag-, Cu-, Zn-Doped Al2O3 Fabricated via Barrier Anodizing of Pure Al and Alloys. Coatings 2024, 14, 576. [Google Scholar] [CrossRef]
- Poznyak, A.; Pligovka, A.; Turavets, U.; Norek, M. On-Aluminum and Barrier Anodic Oxide: Meeting the Challenges of Chemical Dissolution Rate in Various Acids and Solutions. Coatings 2020, 10, 875. [Google Scholar] [CrossRef]
- Yang, L.; Lassell, A.; Paiva, G.P.V. Further Study of the Electropolishing of Ti6Al4V Parts Made via Electron Beam Melting. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference SFF 2015, Austin, TX, USA, 10–12 August 2020; pp. 1730–1737. [Google Scholar]
- Tajima, K.; Hironaka, M.; Chen, K.K.; Nagamatsu, Y.; Kakigawa, H.; Kozono, Y. Electropolishing of CP Titanium and Its Alloys in an Alcoholic Solution-Based Electrolyte. Dent. Mater. J. 2008, 27, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Acquesta, A.; Monetta, T. The Electropolishing of Additively Manufactured Parts in Titanium: State of the Art. Adv. Eng. Mater. 2021, 23, 2100545. [Google Scholar] [CrossRef]
- Kuhn, A. The Electropolishing of Titanium and Its Alloys. Met. Finish. 2004, 102, 80–86. [Google Scholar] [CrossRef]
- Larsson Wexell, C.; Shah, F.A.; Ericson, L.; Matic, A.; Palmquist, A.; Thomsen, P. Electropolished Titanium Implants with a Mirror-Like Surface Support Osseointegration and Bone Remodelling. Adv. Mater. Sci. Eng. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Mathieu, J.B.; Landolt, D. Electropolishing of Titanium in Perchloric Acid-Acetic Acid Solution: II. Polarization Behavior and Stoichiometry. J. Electrochem. Soc. 1978, 125, 1044–1049. [Google Scholar] [CrossRef]
- Peighambardoust, N.S.; Nasirpouri, F. Electropolishing Behaviour of Pure Titanium in Perchloric Acid-Methanol-Ethylene Glycol Mixed Solution. Trans. Inst. Met. Finish. 2014, 92, 132–139. [Google Scholar] [CrossRef]
- Piotrowski, O.; Madore, C.; Landolt, D. The Mechanism of Electropolishing of Titanium in Methanol-Sulfuric Acid Electrolytes. J. Electrochem. Soc. 1998, 145, 2362–2369. [Google Scholar] [CrossRef]
- Kim, D.; Son, K.; Sung, D.; Kim, Y.; Chung, W. Effect of Added Ethanol in Ethylene Glycol-NaCl Electrolyte on Titanium Electropolishing. Corros. Sci. 2015, 98, 494–499. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Kityk, A.; Protsenko, V.; Danilov, F.; Pavlik, V.; Hnatko, M.; Soltýs, J. Enhancement of the Surface Characteristics of Ti-Based Biomedical Alloy by Electropolishing in Environmentally Friendly Deep Eutectic Solvent (Ethaline). Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126125. [Google Scholar] [CrossRef]
- Lochynski, P.; Kowalski, M.; Szczygiel, B.; Kuczewski, K. Improvement of the Stainless Steel Electropolishing Process by Organic Additives. Pol. J. Chem. Technol. 2016, 18, 76–81. [Google Scholar] [CrossRef]
- Barnes, P.; Savva, A.; Dixon, K.; Bull, H.; Rill, L.; Karsann, D.; Croft, S.; Schimpf, J.; Xiong, H. Electropolishing Valve Metals with a Sulfuric Acid-Methanol Electrolyte at Low Temperature. Surf. Coat. Technol. 2018, 347, 150–156. [Google Scholar] [CrossRef]
- Tian, H.; Corcoran, S.G.; Reece, C.E.; Kelley, M.J. The Mechanism of Electropolishing of Niobium in Hydrofluoric–Sulfuric Acid Electrolyte. J. Electrochem. Soc. 2008, 155, D563. [Google Scholar] [CrossRef]
- Łyczkowska-Widłak, E.; Lochyński, P.; Nawrat, G. Electrochemical Polishing of Austenitic Stainless Steels. Materials 2020, 13, 2557. [Google Scholar] [CrossRef] [PubMed]
- Rokosz, K.; Hryniewicz, T.; Rzadkiewicz, S. Metoda Identyfikacji Warstw o Różnej Nanotwardo Ści Powstałych Po Walcowaniu Na Zimno Austenitycznej Stali Stopowej. Autobusy Tech. Eksploat. Syst. Transp. 2014, 15, 240–243. [Google Scholar]
- Maniam, K.K.; Paul, S. Ionic Liquids and Deep Eutectic Solvents for CO2 Conversion Technologies—A Review. Materials 2021, 14, 4519. [Google Scholar] [CrossRef] [PubMed]
- Tang, C. Electropolishing with Low Mass Loss for Additive Manufacturing of Ti6Al4V in Zinc Chloride-Urea Deep-Eutectic Solvent. J. Electrochem. Soc. 2024, 171, 051504. [Google Scholar] [CrossRef]
- Prihandana, G.S.; Sriani, T.; Jamaludin, M.F.; Yusof, F.; Arifvianto, B.; Mahardika, M. Parameters Optimization for Electropolishing Titanium by Using Taguchi-Based Pareto ANOVA. Metals 2023, 13, 392. [Google Scholar] [CrossRef]
- Chrzanowski, W. Corrosion Study of Ti6Al7Nb Alloy after Thermal, Anodic and Alkali Surface Treatments. J. Achiev. Mater. Manuf. Eng. 2008, 31, 203–211. [Google Scholar]
- Hryniewicz, T.; Rokicki, R.; Rokosz, K. Corrosion and Surface Characterization of Titanium Biomaterial after Magnetoelectropolishing. Surf. Coat. Technol. 2009, 203, 1508–1515. [Google Scholar] [CrossRef]
- Jhong, Y.T.; Chao, C.Y.; Hung, W.C.; Du, J.K. Effects of Various Polishing Techniques on the Surface Characteristics of the Ti-6al-4v Alloy and on Bacterial Adhesion. Coatings 2020, 10, 57. [Google Scholar] [CrossRef]
- Simka, W.; Mosiałek, M.; Nawrat, G.; Nowak, P.; Zak, J.; Szade, J.; Winiarski, A.; Maciej, A.; Szyk-Warszyńska, L. Electrochemical Polishing of Ti-13Nb-13Zr Alloy. Surf. Coat. Technol. 2012, 213, 239–246. [Google Scholar] [CrossRef]
Sample Label | Surface Modification |
---|---|
Ti-M | Titanium reference sample |
Ti-M-EP1 | Titanium electropolished, 10 V, 10 min |
Ti-M-EP2 | Titanium electropolished, 12.5 V, 10 min |
Ti-M-EP3 | Titanium electropolished, 15 V, 10 min |
TAV-M | Ti6Al4V reference sample |
TAV-M-EP1 | Ti6Al4V electropolished, 10 V, 10 min |
TAV-M-EP2 | Ti6Al4V electropolished, 12.5 V, 10 min |
TAV-M-EP3 | Ti6Al4V electropolished, 15 V, 10 min |
Sample Label | Ra, μm | Rz, μm | Sa, μm | ||
---|---|---|---|---|---|
Micro-Scale | Macro-Scale | Micro-Scale | Macro-Scale | ||
Ti-M | 0.685 ± 0.070 | 0.96 ± 0.23 | 4.26 ± 0.56 | 5.83 ± 1.38 | 0.763 |
Ti-M-EP1 | 0.276 ± 0.020 | 0.52 ± 0.27 | 1.52 ± 0.10 | 2.39 ± 1.73 | 0.385 |
Ti-M-EP2 | 0.287 ± 0.043 | 0.09 ± 0.03 | 1.47 ± 0.07 | 0.49 ± 0.13 | 0.443 |
Ti-M-EP3 | 0.261 ± 0.025 | 0.13 ± 0.06 | 1.35 ± 0.09 | 1.10 ± 0.96 | 0.403 |
TAV-M | 0.566 ± 0.079 | 0.61 ± 0.04 | 3.03 ± 0.41 | 2.80 ± 1.44 | 0.497 |
TAV-M-EP1 | 0.227 ± 0.046 | 0.68 ± 0.29 | 1.31 ± 0.22 | 2.59 ± 0.91 | 0.592 |
TAV-M-EP2 | 0.275 ± 0.021 | 0.36 ± 0.11 | 1.50 ± 0.08 | 2.51 ± 1.25 | 0.406 |
TAV-M-EP3 | 0.262 ± 0.050 | 0.09 ± 0.04 | 1.33 ± 0.20 | 0.47 ± 0.12 | 0.566 |
Sample Label | Contact Angle [°C] | Standard Deviation [°C] |
---|---|---|
Ti-M | 73.85 | 2.26 |
Ti-M-EP1 | 32.26 | 6.79 |
Ti-M-EP2 | 72.02 | 2.74 |
Ti-M-EP3 | 81.28 | 5.00 |
TAV-M | 51.86 | 3.43 |
TAV-M-EP1 | 80.49 | 4.61 |
TAV-M-EP2 | 78.08 | 2.76 |
TAV-M-EP3 | 39.06 | 3.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołkowska, A.; Michalska, J.; Zieliński, R.; Simka, W. Electrochemical Polishing of Ti and Ti6Al4V Alloy in Non-Aqueous Solution of Sulfuric Acid. Materials 2024, 17, 2832. https://doi.org/10.3390/ma17122832
Kołkowska A, Michalska J, Zieliński R, Simka W. Electrochemical Polishing of Ti and Ti6Al4V Alloy in Non-Aqueous Solution of Sulfuric Acid. Materials. 2024; 17(12):2832. https://doi.org/10.3390/ma17122832
Chicago/Turabian StyleKołkowska, Agata, Joanna Michalska, Rafał Zieliński, and Wojciech Simka. 2024. "Electrochemical Polishing of Ti and Ti6Al4V Alloy in Non-Aqueous Solution of Sulfuric Acid" Materials 17, no. 12: 2832. https://doi.org/10.3390/ma17122832
APA StyleKołkowska, A., Michalska, J., Zieliński, R., & Simka, W. (2024). Electrochemical Polishing of Ti and Ti6Al4V Alloy in Non-Aqueous Solution of Sulfuric Acid. Materials, 17(12), 2832. https://doi.org/10.3390/ma17122832