Production of Composite Zinc Oxide–Polylactic Acid Radiopaque Filaments for Fused Deposition Modeling: First Stage of a Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Mixture
2.2. Processing the Mixture to the Filament Shape
2.3. SEM Observations and EDS Analysis
2.4. XRD for ZnO Characterization
2.5. Micro-CT Characterization of the Final Filaments
3. Results
3.1. SEM Observation of PLA+ZnO Extruded Filaments
3.2. Bruker Skyscan 1174 Micro-CT Analysis of the Filament
3.3. Metro-Tom ZEISS Micro-CT for Filament Evaluation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirchherr, J.; Yang, N.-H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resour. Conserv. Recycl. 2023, 194, 107001. [Google Scholar] [CrossRef]
- D’Amato, D.; Korhonen, J. Integrating the Green Economy, Circular Economy and Bioeconomy in a Strategic Sustainability Framework. Ecol. Econ. 2021, 188, 107143. [Google Scholar] [CrossRef]
- Saleh Alghamdi, S.; John, S.; Roy Choudhury, N.; Dutta, N.K. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers 2021, 13, 753. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [PubMed]
- Thormark, C. The Effect of Material Choice on the Total Energy Need and Recycling Potential of a Building. Build. Environ. 2006, 41, 1019–1026. [Google Scholar] [CrossRef]
- Cordella, M.; Alfieri, F.; Sanfelix, J.; Donatello, S.; Kaps, R.; Wolf, O. Improving Material Efficiency in the Life Cycle of Products: A Review of EU Ecolabel Criteria. Int. J. Life Cycle Assess. 2020, 25, 921–935. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Kumar, R.; Pruncu, C.I. Recent Progress of Reinforcement Materials: A Comprehensive Overview of Composite Materials. J. Mater. Res. Technol. 2019, 8, 6354–6374. [Google Scholar] [CrossRef]
- Rajak, D.; Pagar, D.; Menezes, P.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef]
- Kickelbick, G. Concepts for the Incorporation of Inorganic Building Blocks into Organic Polymers on a Nanoscale. Prog. Polym. Sci. 2003, 28, 83–114. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric Composite Materials for Radiation Shielding: A Review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef]
- Suman, S.K.; Mondal, R.K.; Kumar, J.; Dubey, K.A.; Kadam, R.M.; Melo, J.S.; Bhardwaj, Y.K.; Varshney, L. Development of Highly Radiopaque Flexible Polymer Composites for X-Ray Imaging Applications and Copolymer Architecture-Morphology-Property Correlations. Eur. Polym. J. 2017, 95, 41–55. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Shao, K.; Ding, G.; Tao, Y.; Zhu, J. Morphologies, Mechanical Properties and Thermal Stability of Poly(Lactic Acid) Toughened by Precipitated Barium Sulfate. Russ. J. Phys. Chem. A 2015, 89, 2092–2096. [Google Scholar] [CrossRef]
- Abulyazied, D.E.; Issa, S.A.M.; Alrowaily, A.W.; Saudi, H.A.; Zakaly, H.M.H.; Ali, E.S. Polylactic Acid Tungsten Trioxide Reinforced Composites: A Study of Their Thermal, Optical, and Gamma Radiation Attenuation Performance. Radiat. Phys. Chem. 2023, 205, 110705. [Google Scholar] [CrossRef]
- Yilmaz, M.; Pekdemir, M.E.; Özen Öner, E. Evaluation of Pb Doped Poly(Lactic Acid) (PLA)/Poly(Ethylene Glycol) (PEG) Blend Composites Regarding Physicochemical and Radiation Shielding Properties. Radiat. Phys. Chem. 2023, 202, 110509. [Google Scholar] [CrossRef]
- Gomez-Romero, P. Hybrid Organic-Inorganic Materials—In Search of Synergic Activity. Adv. Mater. 2001, 13, 163–174. [Google Scholar] [CrossRef]
- Carné, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Nanoscale Metal–Organic Materials. Chem. Soc. Rev. 2011, 40, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive Manufacturing and Its Societal Impact: A Literature Review. Int. J. Adv. Manuf. Technol. 2013, 67, 1191–1203. [Google Scholar] [CrossRef]
- Tancini, F.; Wu, Y.; Schweizer, W.B.; Gisselbrecht, J.; Boudon, C.; Jarowski, P.D.; Beels, M.T.; Biaggio, I.; Diederich, F. 1,1-Dicyano-4-[4-(Diethylamino)Phenyl]Buta-1,3-dienes: Structure–Property Relationships. Eur. J. Org. Chem. 2012, 2012, 2756–2765. [Google Scholar] [CrossRef]
- Chong, W.J.; Pejak Simunec, D.; Trinchi, A.; Kyratzis, I.; Li, Y.; Wright, P.; Shen, S.; Sola, A.; Wen, C. Advancing the Additive Manufacturing of PLA-ZnO Nanocomposites by Fused Filament Fabrication. Virtual Phys. Prototyp. 2024, 19, e2285418. [Google Scholar] [CrossRef]
- Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A Review on Green Synthesis of Zinc Oxide Nanoparticles—An Eco-Friendly Approach. Resour.-Effic. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Murariu, M.; Dubois, P. PLA Composites: From Production to Properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef]
- Amirov, A.; Omelyanchik, A.; Murzin, D.; Kolesnikova, V.; Vorontsov, S.; Musov, I.; Musov, K.; Khashirova, S.; Rodionova, V. 3D Printing of PLA/Magnetic Ferrite Composites: Effect of Filler Particles on Magnetic Properties of Filament. Processes 2022, 10, 2412. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.R.; Khosravi, F.; Saedi Ardahaei, A.S.; Dai, Y.; Neisiany, R.E.; Foroughi, F.; Wu, M.; Das, O.; Ramakrishna, S. The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers 2021, 13, 1854. [Google Scholar] [CrossRef]
- Bettini, P.; Alitta, G.; Sala, G.; Di Landro, L. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic. J. Mater. Eng. Perform. 2017, 26, 843–848. [Google Scholar] [CrossRef]
- Mallick, P.K. Fiber-Reinforced Composites; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780429122064. [Google Scholar]
- Murariu, M.; Benali, S.; Paint, Y.; Dechief, A.-L.; Murariu, O.; Raquez, J.-M.; Dubois, P. Adding Value in Production of Multifunctional Polylactide (PLA)–ZnO Nanocomposite Films through Alternative Manufacturing Methods. Molecules 2021, 26, 2043. [Google Scholar] [CrossRef]
- Bikiaris, N.D.; Koumentakou, I.; Samiotaki, C.; Meimaroglou, D.; Varytimidou, D.; Karatza, A.; Kalantzis, Z.; Roussou, M.; Bikiaris, R.D.; Papageorgiou, G.Z. Recent Advances in the Investigation of Poly(Lactic Acid) (PLA) Nanocomposites: Incorporation of Various Nanofillers and Their Properties and Applications. Polymers 2023, 15, 1196. [Google Scholar] [CrossRef]
- Noor Azman, N.Z.; Wan Mohamed, W.F.I.; Ramli, R.M. Synthesis and Characterization of Electrospun N-ZnO/n-Bi2O3/Epoxy-PVA Nanofiber Mat for Low X-Ray Energy Shielding Application. Radiat. Phys. Chem. 2022, 195, 110102. [Google Scholar] [CrossRef]
- Nain, V.; Kaur, M.; Sandhu, K.S.; Thory, R.; Sinhmar, A. Development, Characterization, and Biocompatibility of Zinc Oxide Coupled Starch Nanocomposites from Different Botanical Sources. Int. J. Biol. Macromol. 2020, 162, 24–30. [Google Scholar] [CrossRef]
- Zhang, Y.; Nayak, T.; Hong, H.; Cai, W. Biomedical Applications of Zinc Oxide Nanomaterials. Curr. Mol. Med. 2013, 13, 1633–1645. [Google Scholar] [CrossRef]
- Wiesmann, N.; Mendler, S.; Buhr, C.R.; Ritz, U.; Kämmerer, P.W.; Brieger, J. Zinc Oxide Nanoparticles Exhibit Favorable Properties to Promote Tissue Integration of Biomaterials. Biomedicines 2021, 9, 1462. [Google Scholar] [CrossRef]
- Oleshko, O.; Husak, Y.; Korniienko, V.; Pshenychnyi, R.; Varava, Y.; Kalinkevich, O.; Pisarek, M.; Grundsteins, K.; Pogorielova, O.; Mishchenko, O.; et al. Biocompatibility and Antibacterial Properties of ZnO-Incorporated Anodic Oxide Coatings on TiZrNb Alloy. Nanomaterials 2020, 10, 2401. [Google Scholar] [CrossRef]
- Mahalakshmi, S.; Hema, N.; Vijaya, P.P. In Vitro Biocompatibility and Antimicrobial Activities of Zinc Oxide Nanoparticles (ZnO NPs) Prepared by Chemical and Green Synthetic Route—A Comparative Study. Bionanoscience 2020, 10, 112–121. [Google Scholar] [CrossRef]
- Qu, M.; Tu, H.; Amarante, M.; Song, Y.; Zhu, S.S. Zinc Oxide Nanoparticles Catalyze Rapid Hydrolysis of Poly(Lactic Acid) at Low Temperatures. J. Appl. Polym. Sci. 2014, 131, 40287. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, S.M.; Shafiq, M.; Abbas, N. Mechanical and Degradation Studies on the Biodegradable Composites of a Polylactic Acid Matrix Reinforced by Tricalcium Phosphate and ZnO Nanoparticles for Biomedical Applications. JOM 2023, 75, 5379–5387. [Google Scholar] [CrossRef]
- Ghozali, M.; Fahmiati, S.; Triwulandari, E.; Restu, W.K.; Farhan, D.; Wulansari, M.; Fatriasari, W. PLA/Metal Oxide Biocomposites for Antimicrobial Packaging Application. Polym. -Plast. Technol. Mater. 2020, 59, 1332–1342. [Google Scholar] [CrossRef]
- Chong, W.J.; Shen, S.; Li, Y.; Trinchi, A.; Pejak, D.; (Louis) Kyratzis, I.; Sola, A.; Wen, C. Additive Manufacturing of Antibacterial PLA-ZnO Nanocomposites: Benefits, Limitations and Open Challenges. J. Mater. Sci. Technol. 2022, 111, 120–151. [Google Scholar] [CrossRef]
- Pantani, R.; Turng, L. Manufacturing of Advanced Biodegradable Polymeric Components. J. Appl. Polym. Sci. 2015, 132, 48. [Google Scholar] [CrossRef]
- Murariu, M.; Paint, Y.; Murariu, O.; Raquez, J.; Bonnaud, L.; Dubois, P. Current Progress in the Production of PLA–ZnO Nanocomposites: Beneficial Effects of Chain Extender Addition on Key Properties. J. Appl. Polym. Sci. 2015, 132, 42480. [Google Scholar] [CrossRef]
- Felfil. Available online: https://felfil.com/full-extrusion-system/?v=5ea34fa833a1 (accessed on 11 June 2024).
- Makovetsky, R.; Piche, N.; Marsh, M. Dragonfly as a Platform for Easy Image-Based Deep Learning Applications. Microsc. Microanal. 2018, 24, 532–533. [Google Scholar] [CrossRef]
Sample | PLA (g) | ZnO (g) | Dried PLA + ZnO (g) | ZnO in Incoming Mixture (g) | ZnO in Incoming Mixture (%) |
---|---|---|---|---|---|
Test 1 | 50.1619 | 4.0537 | 52.6027 | 2.4408 | 4.6401% |
Test 2 | 50.1297 | 4.0452 | 52.2916 | 2.1619 | 4.1343% |
Test 3 | 50.0379 | 4.0060 | 53.1898 | 3.1519 | 5.9258% |
Test 4 | 50.0050 | 4.0307 | 53.4799 | 3.4749 | 6.4976% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherubini, F.; Riberti, N.; Schiavone, A.M.; Davì, F.; Furlani, M.; Giuliani, A.; Barucca, G.; Cassani, M.C.; Rinaldi, D.; Montalto, L. Production of Composite Zinc Oxide–Polylactic Acid Radiopaque Filaments for Fused Deposition Modeling: First Stage of a Feasibility Study. Materials 2024, 17, 2892. https://doi.org/10.3390/ma17122892
Cherubini F, Riberti N, Schiavone AM, Davì F, Furlani M, Giuliani A, Barucca G, Cassani MC, Rinaldi D, Montalto L. Production of Composite Zinc Oxide–Polylactic Acid Radiopaque Filaments for Fused Deposition Modeling: First Stage of a Feasibility Study. Materials. 2024; 17(12):2892. https://doi.org/10.3390/ma17122892
Chicago/Turabian StyleCherubini, Francesca, Nicole Riberti, Anna Maria Schiavone, Fabrizio Davì, Michele Furlani, Alessandra Giuliani, Gianni Barucca, Maria Cristina Cassani, Daniele Rinaldi, and Luigi Montalto. 2024. "Production of Composite Zinc Oxide–Polylactic Acid Radiopaque Filaments for Fused Deposition Modeling: First Stage of a Feasibility Study" Materials 17, no. 12: 2892. https://doi.org/10.3390/ma17122892
APA StyleCherubini, F., Riberti, N., Schiavone, A. M., Davì, F., Furlani, M., Giuliani, A., Barucca, G., Cassani, M. C., Rinaldi, D., & Montalto, L. (2024). Production of Composite Zinc Oxide–Polylactic Acid Radiopaque Filaments for Fused Deposition Modeling: First Stage of a Feasibility Study. Materials, 17(12), 2892. https://doi.org/10.3390/ma17122892