Aggregation–Growth and Densification Behavior of Titanium Particles in Molten Mg-MgCl2 System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. Influencing Factors in Liquid-Phase Sintering
3.2. Aggregation Behavior of Titanium Particles
3.3. Densification Behavior of Sponge Titanium
4. Conclusions
- Compared to molten MgCl2, molten Mg demonstrates superior reduction, dissolution, and wetting effects, which promote the diffusion of titanium atoms, facilitate the aggregation of titanium particles, and accelerate the formation of the titanium sponge skeleton. In the molten MgCl2 medium, titanium particles aggregate and grow at 1100 °C, resulting in the formation of the titanium sponge skeleton. In the molten Mg medium and MgCl2:Mg (1:1) medium, titanium particles aggregate and grow at 1000 °C, leading to the formation of the titanium sponge skeleton. With the increase in temperature, the wettability, reducibility, and solubility of the molten medium are improved, promoting the diffusion of titanium atoms, strengthening the capillary forces between titanium particles, and accelerating the aggregation of titanium particles.
- The Oswald ripening mechanism promotes the coarsening of titanium particles, and the reduction in molten Mg accelerates the aggregation of particles, causing the aggregates to grow rapidly in molten Mg. When aggregated in molten MgCl2, the aggregate size increases through the gathering of small particles on the surface of large particles, resulting in a slower growth rate.
- With an increase in the relative content of molten Mg in the medium, the diffusion of titanium atoms is promoted, and the solid titanium’s mass transfer is accelerated, which benefits the densification of the titanium sponge. At different temperatures, the area ratio of the titanium sponge skeleton is highest in molten Mg, while the total pore area, average pore size, and porosity are lower compared to the other media.
- Kinetics studies show that the porosity of titanium particle aggregates and the porosity of the titanium sponge skeleton decrease with increasing temperature at the same time, and the limiting value of the relative density increases. The aggregation rate of titanium particles and the densification rate of titanium sponge were higher at 0~3 h. From 3 h to 80 h, the aggregation rate of titanium particles and the densification rate of titanium sponge gradually decreased and continued to extend the time. The relative density basically remained unchanged, and the density of aggregates and titanium sponge reached the limit.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lutjering, G.; Williams, J.C. Titanium; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Kishimoto, A.; Uda, T. In-situ observation on the magnesiothermic reduction of TiCl4 around 800 °C by microfocus X-ray fluoroscopy. J. Alloys Compd. 2021, 874, 159855. [Google Scholar] [CrossRef]
- Nagesh, C.R.; Rao, C.S.; Ballal, N.B.; Rao, P.K. Mechanism of titanium sponge formation in the Kroll reduction reactor. Metall. Mater. Trans. B 2004, 35, 65–74. [Google Scholar] [CrossRef]
- Wartman, F.S.; Baker, D.H.; Nettle, J.R.; Homme, V.E. Some observations on the Kroll process for titanium. J. Electrochem. Soc. 1954, 101, 507. [Google Scholar] [CrossRef]
- Wang, W.; Wu, F.; Jin, H. Enhancement and performance evaluation for heat transfer of air cooling zone for reduction system of sponge titanium. Heat Mass Transf. 2017, 53, 465–473. [Google Scholar] [CrossRef]
- Evdokimov, V.I.; Krenev, V.A. Magnesium reduction of titanium tetrachloride. Inorg. Mater. 2002, 38, 490–493. [Google Scholar] [CrossRef]
- Noda, T. Outline of Presentation on Development in Ti Sponge Production in Halda Century. Titan. Jpn. 1994, 42, 85–89. [Google Scholar]
- Okabe, T.H.; Sadoway, D.R. Metallothermic reduction as an electronically mediated reaction. J. Mater. Res. 1998, 13, 3372–3377. [Google Scholar] [CrossRef]
- Uda, T.; Okabe, T.; Kasai, E.; Waseda, Y. Direct evidence of electronically mediated reaction during TiC14 reduction by magnesium; TiCl4 no magnesium kangen ni okeru dendotai wo kaishita hanno (EMR) no jissho. J. Jpn. Inst. Met. Mater. 1997, 61, 602–609. [Google Scholar] [CrossRef]
- Shimosaki, S.; Kuramoto, M. Production rate of titanium by reduction of titanium tetrachloride with magnesium; TiCl4 no Mg kangen ni yoru kinzoku Ti no seisei sokudo. Kagaku Kogaku Ronbunshu 1995, 21, 740–745. [Google Scholar] [CrossRef]
- Uda, T.; Okabe, T.H.; Waseda, Y. Location control of titanium deposition during magnesiothermic reduction of TiCl4 by long range electronically mediated reaction. J. Jpn. Inst. Met. Mater. 1998, 62, 76–84. [Google Scholar] [CrossRef]
- Nagesh, C.R.V.S.; Ramachandran, C.S.; Subramanyam, R.B. Methods of titanium sponge production. Trans. Indian. Inst. Met. 2008, 61, 341–348. [Google Scholar] [CrossRef]
- Zhou, L.G. Research on Key Technologies of Magnesium Reduction in Titanium Sponge Production; Yunnan University: Kunming, China, 2016. [Google Scholar]
- Wang, C. Cause Analysis and Control Measures of Titanium Sponge Densification; Kunming University of Science and Technology: Kunming, China, 2015. [Google Scholar]
- Lee, J.C.; Jung, J.Y.; Sohn, H. Effect of TiCl4 Feeding Rate on the Formation of Titanium Sponge in the Kroll Process. J. Korean Inst. Met. Mater. 2012, 50, 745–751. [Google Scholar]
- Hockaday, S.A.C.; Bisaka, K. Experience and results from running of a 1 kg Ti scale Kroll reactor. In Proceedings of the Advanced Metals Initiative: Light Metals Conference 2010; Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2010; pp. 265–280. [Google Scholar]
- Withers, J.; Laughlin, J.; Elkadi, Y.; DeSilva, J.; Loutfy, R.O. A Continuous Process to Produce Titanium Utilizing Metallothermic Chemistry. Key Eng. Mater. 2010, 436, 55–60. [Google Scholar] [CrossRef]
- Bae, H.N.; Kim, S.H.; Lee, G.G.; Jo, S.K.; Jung, J.Y. Study of Thermal Behavior in a Kroll Reactor for the Optimization of Ti Sponge Production. Mater. Sci. Forum 2010, 654–656, 839–842. [Google Scholar] [CrossRef]
- Wang, W.; Wu, F.; Jin, H.; Gao, C. Heat Transfer Model of Molten Bath in Sponge Titanium Production with Magnesiothermic Reduction. Nonferrous Met. (Extr. Metall.) 2013, 11, 19–21. [Google Scholar]
- Dou, S.; Wu, F.; Gao, C. Study on Forced Heat Dissipation for Titanium Sponge Production through Magnesium Thermal Reduction Process. Nonferrous Met. (Extr. Metall.) 2013, 6, 22–25. [Google Scholar]
- Chen, Y.; Li, Z.; Zhang, J.; Xie, L. Effect of Reduction Temperature on Structure of Titanium Sponge Produced by Kroll Process. Nonferrous Met. (Extr. Metall.) 2014, 4, 29–32. [Google Scholar]
- He, Y.; Chen, D.; Sun, X.; Liu, H.; Chen, Y.; Zhou, Y.; Zhao, Y. Simulation of Temperature Field in a 13 t Large-scale Titanium Sponge Reduction Reactor. Spec. Cast. Nonferrous Alloys 2021, 41, 956–960. [Google Scholar]
- Feng, T.; Zheng, W.; Chen, W.; Shi, Y.; Fu, Y.Q. Enhanced interfacial wettability and mechanical properties of Ni@Al2O3/Cu ceramic matrix composites using spark plasma sintering of Ni coated Al2O3 powders. Vac. Technol. Appl. Ion Phys. Int. J. Abstr. Serv. Vac. Sci. Technol. 2021, 184, 109938. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Heydari, M.S.; Baharvandi, H.R.; Ehsani, N. Effect of iron on the wetting, sintering ability, and the physical and mechanical properties of boron carbide composites: A review. Int. J. Refract. Met. Hard Mater. 2016, 57, 78–92. [Google Scholar] [CrossRef]
- Zhou, R.; Wei, D.; Cheng, S.; Li, B.; Wang, Y.; Jia, D.; Zhou, Y.; Guo, H. The structure and in vitro apatite formation ability of porous titanium covered bioactive microarc oxidized TiO2-based coatings containing Si, Na and Ca. Ceram. Int. 2014, 40, 501–509. [Google Scholar] [CrossRef]
- González-Elipe, A.R.; Munuera, G.; Espinos, J.P.; Sanz, J.M. Compositional changes induced by 3.5 keV Ar+ ion bombardment in Ni-Ti oxide systems: A comparative study. Surf. Sci. 1989, 220, 368–380. [Google Scholar] [CrossRef]
- Sodhi, R.N.S.; Weninger, A.; Davies, J.E.; Sreenivas, K. X-ray photoelectron spectroscopic comparison of sputtered Ti, Ti6Al4V, and passivated bulk metals for use in cell culture techniques. J. Vac. Sci. Technol. A Vac. Surf. Film. 1991, 9, 1329–1333. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, C.; Li, C. Wetting and sealing of the interface between silicate glass and copper. Int. J. Mater. Res. 2019, 110, 163–173. [Google Scholar] [CrossRef]
- Fima, P.; Gancarz, T.; Pstruś, J.; Sypień, A. Wetting of Sn-Zn-x In (x = 0.5, 1.0, 1.5 wt%) Alloys on Cu and Ni Substrates. J. Mater. Eng. Perform. 2012, 21, 595–598. [Google Scholar] [CrossRef]
- Murray, J.L. The Mg−Ti (magnesium-titanium) system. Bull. Alloy Phase Diagr. 1986, 7, 245–248. [Google Scholar] [CrossRef]
- Aust, K.T.; Pidgeon, L.M. Solubility of titanium in liquid magnesium. JOM 1949, 1, 585–587. [Google Scholar] [CrossRef]
- Guo, S. Powder Sintering Theory; Metallurgical Industry Press: Beijing, China, 1998. [Google Scholar]
- Tadic, M.; Panjan, M.; Tadic, B.V.; Kralj, S.; Lazovic, J. Magnetic properties of mesoporous hematite/alumina nanocomposite and evaluation for biomedical applications. Ceram. Int. 2022, 48, 10004–10014. [Google Scholar] [CrossRef]
- Tadic, M.; Kralj, S.; Lalatonne, Y.; Motte, L. Iron oxide nanochains coated with silica: Synthesis, surface effects and magnetic properties. Appl. Surf. Sci. 2019, 476, 641–646. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y.; Wang, Q.; Zhang, X.; He, S. Wettability between Titanium-Containing Steels and TiC Ceramic Substrate. Steel Res. Int. 2023, 94, 2300190. [Google Scholar] [CrossRef]
- Liu, X.; Hu, L. Desorption–Recombination kinetics and Mechanism of a Mechanically Milled Nano-Structured Nd16Fe76B8 Alloy During Vacuum Annealing. J. Alloys Compd. 2013, 558, 142–149. [Google Scholar] [CrossRef]
- Jeangros, Q.; Hansen, T.W.; Wagner, J.B.; Damsgaard, C.D.; Dunin-Borkowski, R.E.; Hébert, C.; Van Herle, J.; Hessler-Wyser, A. Reduction of nickel oxide particles by hydrogen studied in an environmental TEM. J. Mater. Sci. 2013, 48, 2893–2907. [Google Scholar] [CrossRef]
- Duan, C.W.; Hu, L.X.; Sun, Y.; Zhou, H.P.; Yu, H. Reaction kinetics for the solid state synthesis of the AlH3/MgCl2 nano-composite by mechanical milling. Phys. Chem. Chem. Phys. 2015, 17, 22152–22159. [Google Scholar] [CrossRef] [PubMed]
Temperature | Kinetics Formulas | 1 − ξ | ||||
---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | ||
800 °C | ξ = 1 − exp(−0.4819t0.1878) | 0.6116 | 0.5857 | 0.551 | 0.5342 | 0.5156 |
900 °C | ξ = 1 − exp(−0.4966t0.1906) | 0.6061 | 0.5820 | 0.5301 | 0.5266 | 0.5122 |
Temperature | Kinetics Formulas | 1 − ξ | ||||
---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | ||
1000 °C | ξ = 1 − exp(−0.5769t0.1955) | 0.5547 | 0.5271 | 0.4816 | 0.4693 | 0.4487 |
1100 °C | ξ = 1 − exp(−0.6005t0.2893) | 0.5391 | 0.4938 | 0.4452 | 0.4079 | 0.3731 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, K.; Li, J.; Sheng, Z.; Liu, Y. Aggregation–Growth and Densification Behavior of Titanium Particles in Molten Mg-MgCl2 System. Materials 2024, 17, 2904. https://doi.org/10.3390/ma17122904
Yang X, Li K, Li J, Sheng Z, Liu Y. Aggregation–Growth and Densification Behavior of Titanium Particles in Molten Mg-MgCl2 System. Materials. 2024; 17(12):2904. https://doi.org/10.3390/ma17122904
Chicago/Turabian StyleYang, Xin, Kaihua Li, Jun Li, Zhuo Sheng, and Ying Liu. 2024. "Aggregation–Growth and Densification Behavior of Titanium Particles in Molten Mg-MgCl2 System" Materials 17, no. 12: 2904. https://doi.org/10.3390/ma17122904
APA StyleYang, X., Li, K., Li, J., Sheng, Z., & Liu, Y. (2024). Aggregation–Growth and Densification Behavior of Titanium Particles in Molten Mg-MgCl2 System. Materials, 17(12), 2904. https://doi.org/10.3390/ma17122904