Optimization of Vertical Fixed-Bed Pyrolysis for Enhanced Biochar Production from Diverse Agricultural Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermochemical Characteristics Analyses of Agricultural Waste
2.2.1. Thermal Decomposition Behavior—TGA-DTG
2.2.2. Ultimate (Elemental) Analysis
2.2.3. Higher Heating Value (HHV) Analysis
2.3. Carbonization Experiments
2.4. Porosity Analysis
2.5. Surface and Elemental Characterization of Biochar Products
2.5.1. Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS)
2.5.2. Fourier Transform Infrared (FTIR) Spectroscopy
3. Results
3.1. Properties of CS, RH, and CD Feedstocks
3.2. Mass Yields and Calorific Values of Biochar Products
Mass Yields and Calorific Values of Biochar Products
3.3. Physical Characteristics of Biochars
3.4. Chemical Characteristics of Biochars
FTIR Characterization
4. Discussion
4.1. Impact of Biochar Uses for Soil Quality
4.2. Impact of Biochar Uses for Energy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chand, R. Agricultural challenges and policies for the 21st century. NABARD Res. Policy Ser. 2022, 2, 36. [Google Scholar]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 1–13. [Google Scholar]
- Laborde, D.; Mamun, A.; Martin, W.; Piñeiro, V.; Vos, R. Agricultural subsidies and global greenhouse gas emissions. Nat. Commun. 2021, 12, 2601. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Cerdà, A. A review of soil carbon dynamics resulting from agricultural practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef] [PubMed]
- Aghbashlo, M.; Tabatabaei, M.; Soltanian, S.; Ghanavati, H. Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis. Renew. Energy 2019, 143, 64–76. [Google Scholar] [CrossRef]
- Campos, P.; Miller, A.Z.; Knicker, H.; Costa-Pereira, M.F.; Merino, A.; De la Rosa, J.M. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Manag. 2020, 105, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Thakur, I.S.; Pandey, A.; Ngo, H.H.; Soccol, C.R.; Larroche, C. (Eds.) Biomass, Biofuels, Biochemicals: Climate Change Mitigation: Sequestration of Green House Gases; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Lee, J.W.; Hawkins, B.; Li, X.; Day, D.M. Biochar fertilizer for soil amendment and carbon sequestration. In Advanced Biofuels and Bioproducts; Springer: New York, NY, USA, 2013; pp. 57–68. [Google Scholar]
- Kannah, Y.; Kavitha, S.; Sivashanmugam, P.; Kumar, G. Ultrasonic induced mechanoacoustic effect on delignification of rice straw for cost effective biopretreatment and biomethane recovery. Sustain. Energy Fuels 2021, 5, 1832–1844. [Google Scholar] [CrossRef]
- Kavitha, S.; Kannah, R.Y.; Kasthuri, S.; Gunasekaran, M.; Pugazhendi, A.; Rene, E.R.; Banu, J.R. Profitable biomethane production from delignified rice straw biomass: The effect of lignin, energy and economic analysis. Green Chem. 2020, 22, 8024–8035. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- Jugwanth, Y.; Sewsynker-Sukai, Y.; Kana, E.G. Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel 2020, 262, 116552. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, C.; Yan, Z.; Jiang, H.; Xu, H. Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere 2018, 211, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T.; Liu, S.C.; Chen, H.R.; Chang, Y.M.; Tsai, Y.L. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 2012, 89, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T.; Liu, S.C.; Hsieh, C.H. Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue. J. Anal. Appl. Pyrolysis 2012, 93, 63–67. [Google Scholar] [CrossRef]
- Yavari, S.; Malakahmad, A.; Sapari, N.B. Biochar efficiency in pesticides sorption as a function of production variables—A review. Environ. Sci. Pollut. Res. 2015, 22, 13824–13841. [Google Scholar] [CrossRef] [PubMed]
- Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. In Biochar for Environmental Management; Routledge: Oxfordshire, UK, 2012; pp. 45–64. [Google Scholar]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; Amonette, J.E. An investigation into the reactions of biochar in soil. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Z.; Zhu, W.; Meng, L.Y. Quantitative analysis of the current status and research trends of biochar research-A scientific bibliometric analysis based on global research achievements from 2003 to 2023. Environ. Sci. Pollut. Res. 2023, 30, 83071–83092. [Google Scholar] [CrossRef]
- Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; Mackey, H.; Al-Ansari, T. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. [Google Scholar] [CrossRef]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, K.; Pohořelý, M.; Hartman, M.; Martinec, J. Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Process. Technol. 2009, 90, 629–635. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Das, O.; Mensah, R.A.; George, G.; Jiang, L.; Xu, Q.; Neisiany, R.E.; Berto, F. Flammability and mechanical properties of biochars made in different pyrolysis reactors. Biomass Bioenergy 2021, 152, 106197. [Google Scholar] [CrossRef]
- ASTM D-3172-13; Standard Practice for Proximate Analysis of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2021.
- Hung, C.Y.; Tsai, W.T.; Chen, J.W.; Lin, Y.Q.; Chang, Y.M. Characterization of biochar prepared from biogas digestate. Waste Manag. 2017, 66, 53–60. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lin, Y.Q.; Huang, H.J. Valorization of rice husk for the production of porous biochar materials. Fermentation 2021, 7, 70. [Google Scholar] [CrossRef]
- Tsai, W.T.; Jiang, T.J. Mesoporous activated carbon produced from coconut shell using a single-step physical activation process. Biomass Convers. Biorefin. 2018, 8, 711–718. [Google Scholar] [CrossRef]
- Tsai, W.T.; Kuo, L.A.; Tsai, C.H.; Huang, H.L.; Yang, R.Y.; Tsai, J.H. Production of Porous Biochar from Cow Dung Using Microwave Process. Materials 2023, 16, 7667. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 2005, 544, 191–198. [Google Scholar] [CrossRef]
- Mamleev, V.; Bourbigot, S.; Yvon, J. Kinetic analysis of the thermal decomposition of cellulose: The main step of mass loss. J. Anal. Appl. Pyrolysis 2007, 80, 151–165. [Google Scholar] [CrossRef]
- Chen, W.H.; Wang, C.W.; Ong, H.C.; Show, P.L.; Hsieh, T.H. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 2019, 258, 116168. [Google Scholar] [CrossRef]
- Wang, J.; Minami, E.; Asmadi, M.; Kawamoto, H. Thermal degradation of hemicellulose and cellulose in ball-milled cedar and beech wood. J. Wood Sci. 2021, 67, 1–14. [Google Scholar] [CrossRef]
- Shen, D.; Zhang, L.; Xue, J.; Guan, S.; Liu, Q.; Xiao, R. Thermal degradation of xylan-based hemicellulose under oxidative atmosphere. Carbohydr. Polym. 2015, 127, 363–371. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, M.; Zhu, X.; Guo, D.; Liu, S.; Hu, Z.; Xiao, B.; Wang, J.; Laghari, M. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresour. Technol. 2015, 192, 441–450. [Google Scholar] [CrossRef]
- Saldarriaga, J.F.; Aguado, R.; Pablos, A.; Amutio, M.; Olazar, M.; Bilbao, J. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel 2015, 140, 744–751. [Google Scholar] [CrossRef]
- Dacres, O.D.; Tong, S.; Li, X.; Zhu, X.; Edreis, E.M.; Liu, H.; Luo, G.; Worasuwannarak, N.; Kerdsuwan, S.; Fungtammasan, B.; et al. Pyrolysis kinetics of biomasses pretreated by gas-pressurized torrefaction. Energy Convers. Manag. 2019, 182, 117–125. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Z.; Wang, S.; Guo, D.; Ma, C.; Zhou, Y.; Chen, J.; Laghari, M.; Fazal, S.; Xiao, B.; et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Convers. Manag. 2016, 118, 1–11. [Google Scholar] [CrossRef]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Tong, S.; Xiao, L.; Li, X.; Zhu, X.; Liu, H.; Luo, G.; Worasuwannarak, N.; Kerdsuwan, S.; Fungtammasan, B.; Yao, H. A gas-pressurized torrefaction method for biomass wastes. Energy Convers. Manag. 2018, 173, 29–36. [Google Scholar] [CrossRef]
- Mukome, F.N.; Parikh, S.J. Chemical, Physical, and Surface Characterization of Biochar; CRC Press: Boca Raton, FL, USA, 2015; pp. 67–98. [Google Scholar]
- Chia, C.H.; Downie, A.; Munroe, P. Characteristics of biochar: Physical and structural properties. In Biochar for Environmental Management; Routledge: Oxfordshire, UK, 2015; pp. 89–109. [Google Scholar]
- Tsai, W.T.; Hsu, C.H.; Lin, Y.Q. Highly porous and nutrients-rich biochar derived from dairy cattle manure and its potential for removal of cationic compound from water. Agriculture 2019, 9, 114. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Zhao, X.; Wang, S.; Xing, G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels 2013, 27, 5890–5899. [Google Scholar] [CrossRef]
- Toscano, G.; Pedretti, E.F. Calorific value determination of solid biomass fuel by simplified method. J. Agric. Eng. 2009, 40, 1–6. [Google Scholar] [CrossRef]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Zhu, L. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ. Sci. Technol. 2014, 48, 3411–3419. [Google Scholar] [CrossRef] [PubMed]
- Uchimiya, M.; Hiradate, S. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. J. Agric. Food Chem. 2014, 62, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Kosakowski, W.; Bryszewska, M.A.; Dziugan, P. Biochars from post-production biomass and waste from wood management: Analysis of carbonization products. Materials 2020, 13, 4971. [Google Scholar] [CrossRef] [PubMed]
- Adebajo, S.O.; Oluwatobi, F.; Akintokun, P.O.; Ojo, A.E.; Akintokun, A.K.; Gbodope, I.S. Impacts of rice-husk biochar on soil microbial biomass and agronomic performances of tomato (Solanum lycopersicum L.). Sci. Rep. 2022, 12, 1787. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- EBC. European Biochar Certificate Guidelines for a Sustainable Production of Biochar; European Biochar Foundation (EBC): Arbaz, Switzerland, 2019; Available online: http://www.european-biochar.org/en/download10.13140/RG.2.1.4658.7043 (accessed on 5 January 2021).
- Yao, Q.; Borjihan, Q.; Qu, H.; Guo, Y.; Zhao, Z.; Qiao, L.; Li, T.; Dong, A.; Liu, Y. Cow dung-derived biochars engineered as antibacterial agents for bacterial decontamination. J. Environ. Sci. 2021, 105, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Shi, S.; Liu, J.; Su, S.; Liang, Q.; Zeng, X.; Li, T. Study of the effect of pyrolysis temperature on the Cd2+ adsorption characteristics of biochar. Appl. Sci. 2018, 8, 1019. [Google Scholar] [CrossRef]
- Mosa, A.; El-Ghamry, A.; Tolba, M. Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere 2018, 198, 351–363. [Google Scholar] [CrossRef]
- Zhao, M.; Dai, Y.; Zhang, M.; Feng, C.; Qin, B.; Zhang, W.; Zhao, N.; Li, Y.; Ni, Z.; Xu, Z.; et al. Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Sci. Total Environ. 2020, 717, 136894. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management; Routledge: Oxfordshire, UK, 2015; pp. 1–13. [Google Scholar]
- Liu, H.; Xu, F.; Xie, Y.; Wang, C.; Zhang, A.; Li, L.; Xu, H. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Sci. Total Environ. 2018, 645, 702–709. [Google Scholar] [CrossRef]
- Hariz, A.; Ghani, W.; Mail, M.; Zawawi, N.; Daud, M.; Sadi, T.; Bakar, N. Local practices for production of rice husk biochar and coconut shell biochar: Production methods, product characteristics, nutrient and field water holding capacity. J. Trop. Agric. Food Sci. 2015, 43, 91–101. [Google Scholar]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.; El-Naggar, A.H.; Shaheen, S.M.; Sarkar, B.; Chang, S.X.; Tsang, D.C.; Rinklebe, J.; Ok, Y.S. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. J. Environ. Manag. 2019, 241, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Q.; Guo, G.X.; Ji, J.B. Rapid Determination of Biochar Energy Quality Based on Visible and Near-infrared Spectroscopy (400–1000 nm). In ITM Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 7, p. 09010. [Google Scholar]
- Haeldermans, T.; Campion, L.; Kuppens, T.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresour. Technol. 2020, 318, 124083. [Google Scholar] [CrossRef]
- Pratt, K.; Moran, D. Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass Bioenergy 2010, 34, 1149–1158. [Google Scholar] [CrossRef]
- Field, J.; Keske, C.; Birch, G.; Defoort, M.; Cotrufo, M. Distributed biochar and bioenergy coproduction: A regionally specific case study of environmental benefits and economic impacts. GCB Bioenergy 2013, 5, 177–191. [Google Scholar] [CrossRef]
Thermochemical Property a | Value b | ||
---|---|---|---|
Coconut Shell (CS) | Rice Husk (RH) | Cow Dung (CD) | |
Proximate analysis (wt%) a | |||
Volatile matter (wt%) | 81.58 ± 304 | 68.59 ± 0.00 | 83.02 ± 0.00 |
Ash (wt%) | 0.45 ± 0.12 | 13.38 ± 0.00 | 6.65 ± 0.00 |
Fixed carbon (wt%) | 17.97 | 10.69 | 6.31 |
Elemental analysis (wt%) a | |||
Carbon (C) | 50.92 ± 0.98 | 43.51 ± 1.39 | 47.31 ± 0.57 |
Hydrogen (H) | 6.43 ± 0.1 | 5.82 ± 0.20 | 6.45 ± 0.08 |
Oxygen (O) | 41.98 ± 0.46 | 49.83 ± 1.82 | 44.52 ± 0.64 |
Nitrogen (N) | 0.18 ± 0.10 | 0.56 ± 0.10 | 1.44 ± 0.00 |
Sulfur (S) | 0.09 ± 0.11 | 0.28 ± 0.12 | 0.29 ± 0.00 |
Calorific value (MJ/kg) | 20.92 ± 0.07 | 16.59 ± 0.14 | 18.58 ± 0.05 |
Biochar Sample a | Temperature (°C) | Yield (%) b | SBET c | Calorific Value (MJ/kg) |
---|---|---|---|---|
BC/CS | BC/CS-300 | 57.63 | 2.51 | 26.36 |
BC/CS-400 | 32.35 | 0.72 | 33.77 | |
BC/CS-500 | 32.34 | 0.31 | 35.17 | |
BC/CS-600 | 27.75 | 84.28 | 37.61 | |
BC/CS-700 | 26.19 | 89.58 | 36.31 | |
BC/CS-800 | 21.80 | 81.56 | 37.12 | |
Rice husk | BC/RH-300 | 61.63 | 0.21 | 22.34 |
BC/RH-400 | 50.62 | 4.48 | 23.95 | |
BC/RH-500 | 46.14 | 18.53 | 24.46 | |
BC/RH-600 | 45.76 | 202.39 | 25.31 | |
BC/RH-700 | 39.19 | 125.76 | 24.68 | |
BC/RH-800 | 36.82 | 64.34 | 24.41 | |
Cow dung | BC/CD-300 | 68.99 | -- d | 20.74 |
BC/CD-400 | 45.07 | -- d | 22.01 | |
BC/CD-500 | 37.84 | 12.18 | 21.47 | |
BC/CD-600 | 37.57 | 6.71 | 22.36 | |
BC/CD-700 | 35.43 | 8.19 | 21.79 | |
BC/CD-800 | 30.22 | 42.45 | 21.93 |
Elemental Content (wt%) | BC/CS-800 | BC/RH-800 | BC/CD-800 |
---|---|---|---|
Carbon (C) | 85.52 | 68.94 | 75.17 |
Oxygen (O) | 14.48 | 24.26 | 19.00 |
Silicon (Si) | -- | 6.69 | 2.95 |
Phosphorus (P) | -- | -- | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, T.-J.; Morgan, H.M., Jr.; Tsai, W.-T. Optimization of Vertical Fixed-Bed Pyrolysis for Enhanced Biochar Production from Diverse Agricultural Residues. Materials 2024, 17, 3030. https://doi.org/10.3390/ma17123030
Jiang T-J, Morgan HM Jr., Tsai W-T. Optimization of Vertical Fixed-Bed Pyrolysis for Enhanced Biochar Production from Diverse Agricultural Residues. Materials. 2024; 17(12):3030. https://doi.org/10.3390/ma17123030
Chicago/Turabian StyleJiang, Tasi-Jung, Hervan Marion Morgan, Jr., and Wen-Tien Tsai. 2024. "Optimization of Vertical Fixed-Bed Pyrolysis for Enhanced Biochar Production from Diverse Agricultural Residues" Materials 17, no. 12: 3030. https://doi.org/10.3390/ma17123030
APA StyleJiang, T. -J., Morgan, H. M., Jr., & Tsai, W. -T. (2024). Optimization of Vertical Fixed-Bed Pyrolysis for Enhanced Biochar Production from Diverse Agricultural Residues. Materials, 17(12), 3030. https://doi.org/10.3390/ma17123030