Thermodynamic Model for Hydrogen Production from Rice Straw Supercritical Water Gasification
Abstract
:1. Introduction
2. Modeling Approach
2.1. Thermodynamic Equilibrium Method
2.2. Model Validation
3. Results and Discussion
3.1. Effects of Operating Conditions on SCWG of Rice Straw
3.1.1. Effect of Temperature
3.1.2. Effect of Pressure
3.1.3. Effect of Rice Straw Concentration
3.2. Analysis of Reaction Heat Duty and Higher Heating Value (HHV) of Gaseous Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, L.; Jin, H. Boiling coal in water: Hydrogen production and power generation system with zero net CO2 emission based on coal and supercritical water gasification. Int. J. Hydrogen Energy 2013, 38, 12953–12967. [Google Scholar] [CrossRef]
- Heeley, K.; Orozco, R.L.; Macaskie, L.E.; Love, J.; Al-Duri, B. Supercritical water gasification of microalgal biomass for hydrogen production—A review. Int. J. Hydrogen Energy 2024, 49, 310–336. [Google Scholar] [CrossRef]
- Karimi, K.; Taherzadeh, M.J. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresour. Technol. 2016, 200, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Torres-Mayanga, P.C.; Lachos-Perez, D.; Mudhoo, A.; Kumar, S.; Brown, A.B.; Tyufekchiev, M.; Dragone, G.; Mussatto, S.I.; Rostagno, M.A.; Timko, M.; et al. Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review. Biomass Bioenergy 2019, 130, 105397. [Google Scholar] [CrossRef]
- Xu, J.; Niu, C.; Zhang, D.; Gen, Y.; Hou, Q.; Xie, Y.; Paul, B. Co-pyrolysis of rice straw and water hyacinth: Characterization of products, yields and biomass interaction effect. Biomass Bioenergy 2019, 127, 105281. [Google Scholar] [CrossRef]
- Nunes, L.J.R. Biomass gasification as an industrial process with effective proof-of-concept: A comprehensive review on technologies, processes and future developments. Results Eng. 2022, 14, 100408. [Google Scholar] [CrossRef]
- Okonkwo, C.E.; Hussain, S.Z.; Manzoor, S.; Naseer, B.; Taiwo, A.E.; Ayyash, M.; Al-Marzouqi, A.H.; Kamal-Eldin, A. A comprehensive review on the use of deep eutectic solvents for biomass processing, and the synergistic coupling with physical technology and biological method. Bioresour. Technol. Rep. 2023, 23, 101577. [Google Scholar] [CrossRef]
- Patel, B.; Guo, M.; Izadpanah, A.; Shah, N.; Hellgardt, K. A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing. Bioresour. Technol. 2016, 199, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Suriapparao, D.V.; Tejasvi, R. A review on role of process parameters on pyrolysis of biomass and plastics: Present scope and future opportunities in conventional and microwave-assisted pyrolysis technologies. Process Saf. Environ. Prot. 2022, 162, 435–462. [Google Scholar] [CrossRef]
- Kruse, A. Supercritical water gasification. Biofuels Bioprod. Biorefining 2008, 2, 415–437. [Google Scholar] [CrossRef]
- Reddy, S.N.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Supercritical water gasification of biomass for hydrogen production. Int. J. Hydrogen Energy 2014, 39, 6912–6926. [Google Scholar] [CrossRef]
- Peng, Z.; Rong, S.; Xu, J.; Luo, K.; Zhang, J.; Jin, H.; Guo, L. Hydrogen production from oilfield wastewater by gasification in supercritical water with a continuous system. Fuel 2023, 344, 128094. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Z.; He, C.; Liu, J.; Zhang, R.; Chen, Q. Oily sludge treatment in subcritical and supercritical water: A review. J. Hazard. Mater. 2022, 433, 128761. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Conradie, A.V.; Lester, E. Review of supercritical water gasification with lignocellulosic real biomass as the feedstocks: Process parameters, biomass composition, catalyst development, reactor design and its challenges. Chem. Eng. J. 2021, 415, 128837. [Google Scholar] [CrossRef]
- Peng, Z.; Rong, S.; Xu, J.; Jin, H.; Zhang, J.; Shang, F.; Guo, L. Reaction pathways and kinetics for hydrogen production by oilfield wastewater gasification in supercritical water. Fuel 2022, 314, 123135. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, M.; Xing, X.; Wang, H.; Zeng, Y.; Xu, C.C. Supercritical water gasification of biomass model compounds: A review. Renew. Sustain. Energy Rev. 2020, 118, 109529. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Cui, D.; Bai, J.; Wang, Z.; Xu, F.; Wang, Z. Advances in supercritical water gasification of lignocellulosic biomass for hydrogen production. J. Anal. Appl. Pyrolysis 2023, 170, 105934. [Google Scholar] [CrossRef]
- Yan, M.; Liu, Y.; Song, Y.; Xu, A.; Zhu, G.; Jiang, J.; Hantoko, D. Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification. Energy 2022, 242, 123054. [Google Scholar] [CrossRef]
- Yanik, J.; Ebale, S.; Kruse, A.; Saglam, M.; Yuksel, M. Biomass gasification in supercritical water: Part 1. Effect of the nature of biomass. Fuel 2007, 86, 2410–2415. [Google Scholar] [CrossRef]
- Williams, P.T.; Onwudili, J. Subcritical and Supercritical Water Gasification of Cellulose, Starch, Glucose, and Biomass Waste. Energy Fuels 2006, 20, 1259–1265. [Google Scholar] [CrossRef]
- Lu, Y.; Li, S.; Guo, L. Hydrogen production by supercritical water gasification of glucose with Ni/CeO2/Al2O3: Effect of Ce loading. Fuel 2013, 103, 193–199. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Wang, H.; Han, X.; El-Sayed, H.; Zeng, Y.; Charles Xu, C. Supercritical water gasification of lignocellulosic biomass: Development of a general kinetic model for prediction of gas yield. Chem. Eng. J. 2022, 433, 133618. [Google Scholar] [CrossRef]
- Ruya, P.M.; Purwadi, R.; Lim, S.S. Supercritical water gasification of sewage sludge for power generation– thermodynamic study on auto-thermal operation using Aspen Plus. Energy Convers. Manag. 2020, 206, 112458. [Google Scholar] [CrossRef]
- Tang, H.; Kitagawa, K. Supercritical water gasification of biomass: Thermodynamic analysis with direct Gibbs free energy minimization. Chem. Eng. J. 2005, 106, 261–267. [Google Scholar] [CrossRef]
- Castello, D.; Fiori, L. Supercritical water gasification of biomass: Thermodynamic constraints. Bioresour. Technol. 2011, 102, 7574–7582. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Guo, L.; Lu, Y. Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Convers. Manag. 2006, 47, 1515–1528. [Google Scholar] [CrossRef]
- Yoshida, T.; Oshima, Y. Partial Oxidative and Catalytic Biomass Gasification in Supercritical Water: A Promising Flow Reactor System. Ind. Eng. Chem. Res. 2004, 43, 4097–4104. [Google Scholar] [CrossRef]
- Kou, J.; Xu, J.; Jin, H.; Guo, L.; Zhang, D.; Cao, W. Evaluation of modified Ni/ZrO2 catalysts for hydrogen production by supercritical water gasification of oil-containing wastewater. Int. J. Hydrogen Energy 2018, 43, 13896–13903. [Google Scholar] [CrossRef]
- Ge, Z.; Jin, H.; Guo, L. Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: Explore the way to complete gasification of coal. Int. J. Hydrogen Energy 2014, 39, 19583–19592. [Google Scholar] [CrossRef]
- Peng, Z.; Xu, J.; Rong, S.; Zhang, M.; Wang, L.; Jin, H.; Guo, L. Clean treatment and resource utilization of oilfield wastewater using supercritical water gasification. J. Clean. Prod. 2023, 411, 137239. [Google Scholar] [CrossRef]
- Gutiérrez Ortiz, F.J.; Ollero, P.; Serrera, A.; Sanz, A. Thermodynamic study of the supercritical water reforming of glycerol. Int. J. Hydrogen Energy 2011, 36, 8994–9013. [Google Scholar] [CrossRef]
- Qi, X.; Chen, Y.; Zhao, J.; Su, D.; Liu, F.; Lu, L.; Jin, H.; Guo, L. Thermodynamic and environmental assessment of black liquor supercritical water gasification integrated online salt recovery polygeneration system. Energy 2023, 278, 127835. [Google Scholar] [CrossRef]
- Mathias, P.M.; Copeman, T.W. Extension of the Peng-Robinson equation of state to complex mixtures: Evaluation of the various forms of the local composition concept. Fluid Phase Equilibria 1983, 13, 91–108. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, L.; Yi, L.; Xu, J.; Liu, Z.; Jin, H.; Chen, B.; Guo, L. Performance assessment of an energetically self-sufficient system for hydrogen production from oilfield wastewater treated by supercritical water gasification. Int. J. Hydrogen Energy 2024, 53, 907–918. [Google Scholar] [CrossRef]
- Najafi, S.M.A.; Ghassemi, H. Supercritical water gasification of a heavy fuel oil. Pet. Sci. Technol. 2018, 36, 675–681. [Google Scholar] [CrossRef]
- Xu, J.; Miao, Q.; Peng, Z.; Liu, S.; Zhou, Y.; Yu, L. Thermodynamic analysis of using CO2 as a co-gasification agent in supercritical water gasification of glycerol. J. Environ. Chem. Eng. 2023, 11, 111359. [Google Scholar] [CrossRef]
- Guo, S.; Guo, L.; Cao, C.; Yin, J.; Lu, Y.; Zhang, X. Hydrogen production from glycerol by supercritical water gasification in a continuous flow tubular reactor. Int. J. Hydrogen Energy 2012, 37, 5559–5568. [Google Scholar] [CrossRef]
- Byrd, A.; Pant, K.; Gupta, R. Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel 2008, 87, 2956–2960. [Google Scholar] [CrossRef]
- Nikoo, M.K.; Saeidi, S.; Lohi, A. A comparative thermodynamic analysis and experimental studies on hydrogen synthesis by supercritical water gasification of glucose. Clean Technol. Environ. Policy 2015, 17, 2267–2288. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Xu, P.; Liu, B.; Shuai, Y.; Li, B. Hydrogen production through biomass gasification in supercritical water: A review from exergy aspect. Int. J. Hydrogen Energy 2019, 44, 15727–15736. [Google Scholar] [CrossRef]
- Peng, Z.; Xu, J.; Rong, S.; Luo, K.; Lu, L.; Jin, H.; Zhao, Q.; Guo, L. Thermodynamic and environmental analysis for multi-component supercritical thermal fluid generation by supercritical water gasification of oilfield wastewater. Energy 2023, 269, 126766. [Google Scholar] [CrossRef]
- Kang, K.; Azargohar, R.; Dalai, A.K.; Wang, H. Hydrogen production from lignin, cellulose and waste biomass via supercritical water gasification: Catalyst activity and process optimization study. Energy Convers. Manag. 2016, 117, 528–537. [Google Scholar] [CrossRef]
- Lu, Y.; Guo, L.; Zhang, X.; Ji, C. Hydrogen production by supercritical water gasification of biomass: Explore the way to maximum hydrogen yield and high carbon gasification efficiency. Int. J. Hydrogen Energy 2012, 37, 3177–3185. [Google Scholar] [CrossRef]
- Bai, B.; Liu, Y.; Zhang, H.; Zhou, F.; Han, X.; Wang, Q.; Jin, H. Experimental investigation on gasification characteristics of polyethylene terephthalate (PET) microplastics in supercritical water. Fuel 2020, 262, 116630. [Google Scholar] [CrossRef]
- Fan, Q. Petrochemical Wastewater Gasification with Na2CO3 and K2CO3. Pol. J. Environ. Stud. 2015, 24, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, L.; Cheng, Z.; Lu, L.; Guo, L.; Jin, H.; Zhang, D.; Wang, R.; Liu, S. Performance simulation and thermodynamics analysis of hydrogen production based on supercritical water gasification of coal. Int. J. Hydrogen Energy 2021, 46, 28474–28485. [Google Scholar] [CrossRef]
- Huelsman, C.M.; Savage, P.E. Intermediates and kinetics for phenol gasification in supercritical water. Phys. Chem. Chem. Phys. 2012, 14, 2900–2910. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Guo, L.; Guo, J.; Ge, Z.; Cao, C.; Lu, Y. Study on gasification kinetics of hydrogen production from lignite in supercritical water. Int. J. Hydrogen Energy 2015, 40, 7523–7529. [Google Scholar] [CrossRef]
- Xu, J.; Peng, Z.; Rong, S.; Zhao, Q.; Jin, H.; Guo, L.; Zhou, T.; Zhang, X. Optimal retrofit of a novel multi-component supercritical thermal fluid generation system via thermodynamic analysis. Appl. Therm. Eng. 2022, 219, 119511. [Google Scholar] [CrossRef]
- Mokry, S.; Pioro, I.; Kirillov, P.; Gospodinov, Y. Supercritical-water heat transfer in a vertical bare tube. Nucl. Eng. Des. 2010, 240, 568–576. [Google Scholar] [CrossRef]
- Pinkard, B.R.; Gorman, D.J.; Tiwari, K.; Rasmussen, E.G.; Kramlich, J.C.; Reinhall, P.G.; Novosselov, I.V. Supercritical water gasification: Practical design strategies and operational challenges for lab-scale, continuous flow reactors. Heliyon 2019, 5, e01269. [Google Scholar] [CrossRef] [PubMed]
Elemental Analysis a (wt%, Dry Ash-Free Basis) | Proximate Analysis (wt%, Air-Dry Basis) | LHV (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | S | O a | Moisture | Ash | Volatile Matter | Fixed Carbon | |
41.17 | 5.94 | 0.97 | 0.12 | 51.8 | 8.09 | 9.10 | 68.22 | 14.59 | 13.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Peng, Z.; Yi, L.; Wang, L.; Chen, J.; Chen, B.; Guo, L. Thermodynamic Model for Hydrogen Production from Rice Straw Supercritical Water Gasification. Materials 2024, 17, 3038. https://doi.org/10.3390/ma17123038
Liu Z, Peng Z, Yi L, Wang L, Chen J, Chen B, Guo L. Thermodynamic Model for Hydrogen Production from Rice Straw Supercritical Water Gasification. Materials. 2024; 17(12):3038. https://doi.org/10.3390/ma17123038
Chicago/Turabian StyleLiu, Zhigang, Zhiyong Peng, Lei Yi, Le Wang, Jingwei Chen, Bin Chen, and Liejin Guo. 2024. "Thermodynamic Model for Hydrogen Production from Rice Straw Supercritical Water Gasification" Materials 17, no. 12: 3038. https://doi.org/10.3390/ma17123038
APA StyleLiu, Z., Peng, Z., Yi, L., Wang, L., Chen, J., Chen, B., & Guo, L. (2024). Thermodynamic Model for Hydrogen Production from Rice Straw Supercritical Water Gasification. Materials, 17(12), 3038. https://doi.org/10.3390/ma17123038